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Abstract—We study the problem of personalized Quality
of Service (QoS) estimation for web services. State-of-the-art
methods use matrix factorization or collaborative prediction to
estimate web service response times and throughput for each user
based on partial measurements collected from past invocations.
We point out that in reality, both the response times and through-
put of web services follow highly skewed distributions. In this
case, the conditional mean QoS estimates generated by traditional
matrix completion approaches can be heavily biased toward
a few outliers, leading to poor web service recommendation
performance. In this paper, we propose the Quantile Matrix
Factorization (QMF) technique for web service recommendation
by introducing quantile regression into the matrix factorization
framework. We propose a novel and efficient algorithm based
on Iterative Reweighted Least Squares (IRLS) to solve the QMF
problem involving a non-smooth objective function. We further
extend the proposed QMF approach to take into account user and
service side attributes. Extensive evaluation based on a large-scale
QoS dataset has shown that our schemes significantly outperform
various state-of-the-art web service QoS estimation schemes in
terms of personalized recommendation performance.

I. INTRODUCTION

Cloud computing services, such as Amazon Web Services
(AWS) and Microsoft Azure, provide Software as a Service
(SaaS) to businesses mainly through the form of web services.
Following the service-oriented architecture, a complex web
application for a business is built upon a set of loosely
coupled abstract functionalities [1]. For example, a travel
planning website like Expedia may rely on numerous abstract
services provided by airlines, hotels, car rental companies,
insurance companies, credit card companies and banks, etc.
For each abstract task, there may exist many web services that
can provide the same functionality on the World Wide Web
(WWW). Therefore, maintaining an up-to-date knowledge of
these web services [1]–[3] and ranking them in terms of
Quality of Service (QoS) metrics (e.g. in terms of response
time, availability, and throughput) play a critical role for cloud
service providers to fulfill the Service Level Agreement (SLA)
for the applications relying on them.

The web service QoS estimation and ranking problem
becomes especially challenging as published web services
offered by diverse organizations are growing rapidly on the
Internet. First, since different web service consumers, includ-
ing end users and other web services, are distributed in diverse
geographical regions worldwide, in addition to the QoS of the
web service itself, they may experience different delays and
throughput from the same service, depending on the specific

network QoS. Second, conducting worldwide web service QoS
evaluation between all client-service pairs is not free and often
infeasible, since web services may charge a fee for invocation
and are usually hosted by diverse organizations and companies.
Finally, as web services are constantly being introduced and
updated on the Internet, it is impractical to evaluate all web
service candidates for every client in a short period of time,
due to the associated overhead and cost.

An emerging approach to personalized web service selection
is through collaborative estimation [4], [5], which estimates
QoS parameters between each client and all the web services
by learning from past invocations from similar clients to
similar web services, in a neighbour-based method called
collaborative filtering. Another closely related problem is to
estimate the latency between any two hosts in a network
based on partial pairwise latency measurements in the network.
Traditional solutions to such a task have relied on network
coordinate systems [6]. Recently, low-rank matrix completion
[7], [8] has been adopted as a new approach to recover and
estimate pairwise latencies on the Internet and have shown
significant performance improvement over traditional network
coordinate systems. Furthermore, matrix factorization is one
of the most popular solution techniques for matrix completion
problems due to its scalability and the ease of large-scale
implementation. Although matrix factorization problems are
non-convex, they can be solved efficiently in practice at a large
scale by several standard iterative optimization methods such
as alternating minimization and stochastic gradient descent [9].

Nevertheless, a common limitation of all existing web
service QoS estimation or network latency estimation studies
is that they aim to estimate a conditional mean QoS value
for each user-service pair and have ignored the fact that
QoS metrics, including both latencies and throughput, may
be highly skewed in reality. For example, in a dataset made
available by recent studies [10], we can observe that most
web service response times are within 100 milliseconds while
a few outliers could exceed one or even several seconds
due to network congestion or temporary service unavailability
[8], [11]. In this case, state-of-the-art matrix factorization
techniques, which aim to minimize a mean squared error,
tend to only explain the conditional mean response time or
throughput between a user and a web service, which may
deviate from the “most probable” value due to the existence
of outliers. Therefore, using conditional mean QoS estimates
to select and recommend top web services for each user may



lead to significant biases.
In this paper, we propose Quantile Matrix Factorization

(QMF) and its extension QMF+ for web service QoS estima-
tion for the purpose of personalized web service recommen-
dation. Our contributions are manifold. First, we propose the
concept of Quantile Matrix Factorization by replacing the least
squares objective function in traditional matrix factorization
with an asymmetric loss function similar to that in Quantile
Regression [12]. The new objective function enables us to
estimate the conditional median QoS metrics, which can better
explain the central tendency of skewed data, or to estimate
a certain percentile of the QoS value of interest. Second, al-
though the QMF problem has a non-smooth quantile objective,
we propose a simple yet efficient Iteratively Reweighted Least
Squares (IRLS) algorithm to efficiently solve a smooth approx-
imation of the QMF problem. Finally, we extend the proposed
QMF model to QMF+, such that additional side attributes from
both users and web services, such as countries and ASes, can
be taken into account to enhance QoS estimation accuracy and
web service ranking performance, especially for cases with
extremely sparse past observations.

Through extensive evaluation based on a real-world QoS
measurement dataset between 5825 web services and 339 users
distributed worldwide, we show that our proposed algorithms
greatly outperform several state-of-the-art personalized web
service recommendation schemes, including probabilistic ma-
trix factorization [13] and collaborative estimation [11], in
terms of making personalized selection of the best k web
services for each user and in terms of ranking these top k
services.

The rest of the paper is organized as follows. We formulate
the quantile matrix factorization problem for web service QoS
estimation in Sec. II. In Sec. III, we present an iteratively
reweighted least squares (IRLS) algorithm to solve a smoothed
approximation of quantile matrix factorization. In Sec. IV,
we further extend our model to incorporate the side attribute
information of both users and web services to enhance QoS
estimation accuracy. We evaluate our proposed algorithms in
Sec. V on a real-world dataset and discuss the related literature
in Sec. VI. Finally, the paper is concluded in Sec. VII.

II. PROBLEM DESCRIPTION

Suppose we have a set m users and a set of n web
services. Let M ∈ Rm×n denote the matrix of QoS values
between all the users and servers, where the entry Mu,i

represents the latency (or throughput) between user u and
service i. Assume we have observed the QoS value between
some user-service pairs. Let Ω denote the set of all such
measured (u, i) pairs. The problem is to infer the missing
QoS entries in M only based on the partially observed values
Ω = {Mu,i|QoS value of (u, i) has been observed}.

A. Matrix Factorization for Web Service Recommendation

One effective and popular method that has been success-
fully adopted in network latency estimation based on partial
observations is matrix factorization (e.g., [7], [8]). Matrix

factorization solves a non-convex optimization problem, as-
suming that each user i has a latent feature vector ui ∈ Rr
and each service j has a latent feature vector vj ∈ Rr. Let
U := [u1, . . . , um]> and V := [v1, . . . , vn]>. Then, the matrix
factorization problem is to find two such tall matrices U and
V , with r � {m,n, |Ω|} by solving

min
U∈Rm×r,V ∈Rn×r

∑
(i,j)∈Ω

L(Mi,j , M̂i,j) s.t. M̂ = UV >.

The most commonly used loss function in matrix factor-
ization is the squared loss (Mi,j − u>i vj)

2, with which the
problem is to minimize the mean squared error (MSE):

min
U,V

1

2

∑
(i,j)∈Ω

(Mi,j − M̂i,j)
2 +

λ

2
‖U‖2F +

λ

2
‖V ‖2F

s.t. M̂ = UV >,∀U ∈ Rm×r, V ∈ Rn×r,
(1)

where ‖·‖F denotes the matrix Frobenius norm. The term
λ
2 ‖U‖

2
F and λ

2 ‖V ‖
2
F are usually called regularizer in order to

encourage simple models to avoid over-fitting issues (which
make the model fit observed entries well but drift away from
unknown ones). Like linear regression, solving (1) actually
aims to produce an optimal solution M̂ such that M̂i,j = u>i vj
estimates the conditional mean of the observation Mi,j . For
symmetric noise following a Gaussian distribution, the condi-
tional mean is the most efficient estimator.

However, for skewed or heavy-tailed noises, the conditional
mean can be far away from the central area where Mi,j is
distributed, and thus is not representative of the underlying
most frequent value of Mi,j . In these cases, we need to develop
new techniques to better characterize the median and tail
behavior of observations, beyond conditional mean estimates.

To get an intuitive idea about the distributions of typical
web service QoS data, in Fig. 1(a) and Fig. 1(b), we plot
the response times and throughput values between 339 service
users and 5825 web services distributed all around the world
from a publicly available dataset [10]. Here, the response
time is the duration between the time that a service user
sends a request and the time that he/she has received the
corresponding response, including both the service latency
and network latency. We can see that both response times
and throughput are highly skewed. In Fig. 1(a) we can see
that 90% of measured response times are smaller than 1.7s,
yet the largest measured latency is 19.9s. More importantly,
the mean response time is 0.9s which is much larger than
the median 0.32s, around which most response times are
distributed. Similarly, in Fig. 1(b), the mean throughput is
47.56 kbps, while the median is only 13.95 kbps and 90%
of measured throughput values are smaller than 103.70 kbps
while the largest measured value is 1000 kbps. This also shows
that the throughput is highly skewed and heavy-tailed.

Such a significant discrepancy between the mean and the
median implies that the conventional matrix factorization
minimizing mean squared error (MSE) may not be suitable
for estimating web service QoS metrics, since it tends to
yield a mean estimation conditioned on the observations,
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Fig. 1. Histograms of response times and throughput between 5825 web
services and 339 service users. Both QoS metrics are highly skewed.

while in reality QoS data will most likely concentrate around
their median values. Moreover, the use of MSE-based matrix
factorization can not estimate a certain percentile of the QoS
values.

B. From Quantile Regression to Quantile Matrix Factorization

We now extend the idea of quantile regression to the case of
matrix factorization, and we call such a new approach quantile
matrix factorization.

Quantile regression estimates conditional quantile functions.
More formally, the τ -th quantile of a real-valued random
variable Z is defined as

Qτ (Z) = inf{z : Pr(Z ≤ z) ≥ τ},

among which the median is given by Q0.5(·). If the random
variable Z is conditional on some other variables or param-
eters, the quantile calculated here is called the conditional
quantile.

A useful key observation [12] in quantile regression is

Qτ (Z) = arg min
β

E[ρτ (Z− β)],

where
ρτ (z) := z(τ − 1(z < 0))

is called the check loss function, with 1(z < 0) equal to 1
if z < 0 and equal to 0 otherwise. The rationale behind the
above equation is that, for any 0 < τ < 1, minimizing ρτ (z)
would push the lowest τ fraction to lie below z and 1 − τ
fraction to lie above z.

Given the above observation, we can estimate the quantile of
a random variable Z from its sample observations z1, . . . , zN
by solving the following optimization problem [12]:

Q̂τ (Z) = arg min
β

N∑
i=1

ρτ (zi − β). (2)

Now we introduce a quantile-regression-like objective into
the matrix factorization problem by replacing the squared loss
in the original matrix factorization by a quantile check loss
function. Under this setting, we can formulate the Quantile
Matrix Factorization (QMF) problem as

min
U,V

∑
(i,j)∈Ω

ρτ (Mi,j − M̂i,j) +
λ

2
‖U‖2F +

λ

2
‖V ‖2F

s.t. M̂ = UV >, U ∈ Rm×r, V ∈ Rn×r,
(3)

which aims to produce an optimal solution M̂ such that
M̂i,j = u>i vj estimates the τ -th quantile of the observation
Mi,j . When τ = 0.5, we are essentially estimating the median
of each unobserved Mi,j .

Quantile regression has proven to be a powerful tool and
well accepted method in economics, ecology and statistics.
The above quantile-regression-like formulation has two unique
strengths:

First, the QMF formulation in problem 3 can shift estimates
from mean statistics to conditional medians or other quantiles
of the observations. This is important in practice. The con-
ventional MSE-based MF, as discussed above, is to minimize
the mean squared error and actually estimates the mean of
each Mi,j given the observations. However, when the data is
not Gaussian, this method is not guaranteed to be optimal,
especially when the data are skewed or heavy-tailed.

Second, by focusing on different levels τ of quantiles, we
can obtain a more complete picture of the data than the
conventional MSE-based methods. Actually, the choice of τ
depends on the practitioner’s interests. If we are interested in
the medians, we can set τ = 0.5, and we can get the first and
third quartiles by setting τ = 0.25 and 0.75, respectively. If we
are interested in the tail property, e.g., 10-percentile response
time, we can set τ = 0.1. In more complicated cases, we can
even estimate a specific confidence interval for each Mi,j , e.g.,
a 90% confidence interval of each Mi,j can be estimated by
solving problem 3 under τ = 0.05 to get a lower bound and
then under τ = 0.95 to get an upper bound.

Because of these two strengths, the formulation in problem
3 is particularly suitable for our web service recommendation
task. First, as shown in Fig. 1(a) and 1(b), the response time
and throughput are highly skewed. Secondly, we can utilize
QMF to help a user narrow down the search of web services by
estimating extreme quantile values. QMF in our web service
recommender system can also help users exclude the worst
services with long response time and low throughput, which
can not be achieved by the traditional MSE-based estimator.

III. ALGORITHMS

When it comes to directly optimizing the non-smooth
quantile loss function, choices of efficient algorithms are
limited. Meanwhile, the non-smooth characteristic also hinders
its theoretical investigation. Many researchers use a smooth
function to approximate the quantile loss function, e.g., [14].
In this paper, we use the same strategy to find a smooth
approximation to the quantile objective and then provide an
Iteratively Reweighted Least Square (IRLS) algorithm to solve
the smoothed approximation.

For the residual Ri,j := Mi,j−M̂i,j , we have the following
inequalities:

ρτ (Ri,j) ≤
√
ρ2
τ (Ri,j) + η2 ≤ 1

2

(
ρ2
τ (Ri,j) + η2

zi,j
+ zi,j

)
for η > 0, zi,j > 0. For the first inequality, we can choose
a small constant η related to the sample size |Ω|, e.g.,
η = 1/ log(|Ω|). Then the gap between the first two terms will



Algorithm 1 IRLS for smoothed quantile matrix factorization.
1: Input: PΩ, target rank r
2: Parameter: Smooth constant η > 0, maximum number

of iterations T
3: Initialize U (0) and V (0) with random values
4: for t = 0 to T − 1 do
5: for i = 1, . . . ,m do
6: u

(t+1)
i ← arg minu∈Rr hi(u;V (t), Z(t))

7: end for
8: for j = 1, . . . , n do
9: v

(t+1)
j ← arg minv∈Rr hj(v;U (t), Z(t))

10: end for
11: M (t+1) ← U (t+1)V (t+1)>

12: for (i, j) ∈ Ω do
13: R

(t+1)
i,j ←Mi,j − u(t+1)>

i v
(t+1)
j

14: z
(t+1)
i,j ←

√
ρ2
τ (R

(t+1)
i,j ) + η2

15: end for
16: end for
17: Output: M ← U (T )V (T )>.

diminish as p increases. When zi,j =
√
ρ2
τ (Ri,j) + η2, the

last term is minimized and the second inequality becomes the
equality. Both the last two terms are smooth approximations
of the quantile loss function and under certain conditions,
the approximations could be as close as possible. Motivated
by this fact, we solve the following problem as a smooth
approximation of quantile matrix factorization:

min
U,V

∑
(u,i)∈Ω

√
ρ2
τ (Mi,j − M̂i,j) + η2 +

λ

2
‖U‖2F +

λ

2
‖V ‖2F

s.t. M̂ = UV >,∀U ∈ Rm×r, V ∈ Rn×r.
(4)

Considering the fact that both the number of users and web
services can be very large in the real world, the optimization
algorithm used should have simple steps in each iteration, with
intermediate results that are easy to store. One very popular
family of such algorithms is the Block-Coordinate Descent
(BCD) method, which alternately minimizes each coordinate
or variable, i.e., each row of U or V will be updated alternately
in a sequential order or in parallel. However, since minimizing
a square root loss function directly is not an easy task, we can
try to minimize an approximate function instead. Under some
conditions, minimizing an approximate function can even have
performance similar to minimizing the original loss function.
The Iteratively Reweighted Least Square (IRLS) algorithm
[15] is such an example, and has recently been extended to a
framework called block successive upper-bound minimization
(BSUM) [16].

Motivated by IRLS and BSUM, we propose an algorithm
that iteratively minimizes the following two functions for each
user i and web service j:

hi(u;V,Z) :=
1

2

∑
j∈Ω(i)

ρ2
τ (Mi,j − u>vj)

zi,j
+
λ

2
‖u‖22,

hj(v;U,Z) :=
1

2

∑
i∈Ω(j)

ρ2
τ (Mi,j − u>i v)

zi,j
+
λ

2
‖v‖22,

where Ω(i) denotes the set of observed services for user i,
Ω(j) denotes the set of observed users for service j, and ‖·‖2
denotes the `2 norm. The full procedure of our algorithm is
shown in Algorithm 1. Note that according to Theorem 2
in [16], we can conclude that Algorithm 1 can converge to
stationary points.

Now we present our approach to solve the above two sub-
problems (shown in Steps 6 and 9) by rewriting them as
Quadratic Programming (QP) problems. Then, we can use
some standard solvers to solve QP. For simplicity, we only
rewrite Step 6.

Suppose we have observed l web services for user i.
For residual Ri,j , we can extract its positive component
R+
i,j := max(Ri,j , 0) and its negative component R−i,j :=
−min(Ri,j , 0). Then, we can rewrite the corresponding term
in hi(u;V,Z) as

ρ2
τ (Ri,j)

zi,j
= τ2(R+

i,j)
2/zi,j + (1− τ)2(R−i,j)

2/zi,j (5)

= τ2(S+
i,j)

2 + (1− τ)2(S−i,j)
2, (6)

where we denote S+
i,j := R+

i,j/
√
zi,j and S−i,j := R−i,j/

√
zi,j .

All such S+
i,j and S−i,j form vectors s+ ∈ Rl+ and s− ∈ Rl+,

respectively. We then denote bj = Mi,j/
√
zi,j and v′j =

vj/
√
zi,j for j ∈ Ω(i). Then, we have

S+
i,j − S

−
i,j = (Mi,j − v>j u)/

√
zi,j = bj − v′j>u.

We can finally convert the sub-problem in Step 6 into the
following QP problem:

min
u,s+,s−

τ2‖s+‖22 + (1− τ)2‖s−‖22 +
λ

2
‖u‖22

s.t. s+
j − s

−
j = bj − v′j>u,∀j ∈ Ω(i),

u ∈ Rr, s+, s− ∈ Rl+

(7)

IV. QUANTILE MATRIX FACTORIZATION
WITH SIDE ATTRIBUTES

The previous section provides a new quantile matrix factor-
ization approach to complete the QoS parameter matrix with
some measured entries Mi,j . In this section, we further en-
hance the QoS prediction accuracy by exploiting some readily
obtainable side attributes of both users and web services such
as the location and ISP information. The challenge here is
how to extend the quantile matrix factorization model (3) to
seamlessly incorporate context information of users and web
services. We propose a new formulation, called QMF+, that
incorporates user and server attributes into the proposed QMF
model, and then describe our modified algorithm to solve
QMF+.

Suppose we have collected some user attributes as explicit
user features and collected some web service attributes as
explicit service features. Let xi ∈ Rp and yj ∈ Rq denote
the explicit feature vectors for user i and web service j,
respectively. We assume that the QoS value between user i



and service j depends on the inner product of latent feature
vectors, i.e., u>i vj , as well as on their explicit features via a
bilinear product, i.e., x>i Wyj . In other words, the QoS value
between user i and web service j is modeled as

M̂i,j = u>i vj + x>i Wyj .

Let X = [x1, . . . , xm]> and Y = [y1, . . . , yn]>. Given the
explicit user features X , explicit service features Y , and a
subset of observed QoS values Mi,j , the problem of estimating
the τ -th quantiles of QoS metrics with side attributes (QMF+)
is to solve the following optimization problem:

min
U,V,W

∑
(i,j)∈Ω

ρτ (Mi,j − M̂i,j) +
λ

2
‖U‖2F +

λ

2
‖V ‖2F

s.t. M̂ = UV > +XWY >,

U ∈ Rm×r, V ∈ Rn×r,W ∈ Rp×q.

(8)

Note that for web service recommendation, the number of
explicit user features p and the number of explicit service
features q are usually small relative to the number of users
and services. Hence, there is no need to have a regularizer for
W .

To solve (8), we can extend Algorithm 1 to alternately
minimize W , U and V , and then update the residuals Ri,j and
the corresponding weights zi,j for all known entries (i, j) ∈ Ω.
Note that updating entries of U and V is exactly the same as
what we did in Algorithm 1, where Mi,j is substituted by
M ′i,j := Mi,j − x>i Wyj in QMF+.

We now describe how to update W . Define M̃ := M−UV >
and

H(W ;U, V, Z) :=
1

2

∑
(i,j)∈Ω

ρ2
τ (M̃i,j − x>i Wyj)

zi,j
.

We can minimize the above function efficiently in two com-
mon cases. First, if both p and q are relatively small, we can
directly solve W by the same technique that we used to solve
for U and V . Let the residual R̃i,j := M̃i,j − x>i Wyj , and
denote S̃+

i,j := R̃+
i,j/
√
zi,j and S̃−i,j := R̃−i,j/

√
zi,j . All such

S̃+
i,j and S̃−i,j can also form vectors s̃+ ∈ R|Ω|+ and s− ∈ R|Ω|+ ,

respectively, and we can finally convert it into a QP problem
like (7).

Another common case is when both explicit user features
and explicit service features are sparse, i.e., when all xi’s and
yj’s have few nonzero entries. This happens when the explicit
features are generated from some categorical variables. For
example, suppose the users are from p countries in total and
the web services are from q countries in total. We can generate
their explicit features xi ∈ Rp and yj ∈ Rq by setting xi,p′ =
1 if user i is from country p′ and xi,p′ = 0 otherwise (the
same applies to yj,q′ ). In this case, only one entry in each xi
(or yj) is nonzero. Letting W(p′, q′) denote the set {(i, j) :
xi,p′ = 1, yj,q′ = 1}, we have

H(W ;U, V, Z) =

p∑
p′=1

q∑
q′=1

1

2

∑
(i,j)∈W(p′,q′)

ρ2
τ (M̃i,j −Wp′,q′)

zi,j
,

where

Wp′,q′ := arg min
w

1

2

∑
(i,j)∈Ω

ρ2
τ (M̃i,j − w)

zi,j
.

The minimization problem above is a special case of sub-
problem (7) with r = 1. If there is more than one attribute
(e.g., not only countries but also ISPs), we can divide W
into several blocks and update each block alternately using
the above procedure.

In other more complicated cases, we may need some
additional constraints on W to be able to solve the problem.
For example, we can further assume that W is also low-rank,
and problem (8) can be regarded as a variation of factorization
machines [17]. However, further discussions on more general
explicit features are beyond the scope of this paper. And we
refer interested readers to the literature for details.

V. PERFORMANCE EVALUATION

We evaluate our QMF and QMF+ methods on a publicly
available dataset, which contains response time and throughput
records between 339 users and 5825 web services distributed
worldwide, made available by a previous study [10]. The
dataset also contains explicit user features and service features,
including the country, autonomous system (AS), IP address,
latitude and longitude.

A. Experimental Setup

We will first evaluate the performance of QMF and
QMF+ in comparison to existing web service recommenda-
tion schemes in terms of two performance metrics, namely,
NDCG@k (Normalized Discounted Cumulative Gain at top k)
and Precision@k (Precision at top k). These are two popular
performance metrics for evaluating recommendation and rank-
ing effectiveness. Instead of evaluating the relative/absolute
pairwise prediction errors, these two metrics compare the
gap between the predicted order and the observed order.
Precision@k measures how many true top-k services in the ob-
servation are correctly predicted by an algorithm. Formally, let
Pk(i) be the predicted set of top k services in terms of a QoS
metric, and P∗k (i) be the observed set, and Precision@k(i) for
user i is defined as

Precision@k(i) =
1

k

∑
j∈Pk(i)

1(j ∈ P∗k (i)).

Given a predicted ranked list of services πi for user i, the
NDCG@k metric is defined as

NDCG@k(i) :=
DCG@k(i, πi)

DCG@k(i, π∗i )
,

where

DCG@k(i, πi) = rel(i, πi(1)) +

k∑
j=2

rel(i, πi(j))

log2 j
,

where the value rel(i, πi(j)) is the relevance of the service
πi(j). In our experiments, we simply use the observed QoS
metrics as the relevance values.



TABLE I
RANKING PERFORMANCE COMPARISON OF RESPONSE TIME AND THROUGHPUT ON NDCG@k AND PRECISION@k (LARGER VALUE INDICATES

HIGHER RANKING PERFORMANCE). HERE N@k INDICATES NDCG@k AND P@k INDICATES PRECISION@k

Sampling Rate 1% Sampling Rate 10% Sampling Rate 30%
Data Method N@10 N@100 P@10 P@100 N@10 N@100 P@10 P@100 N@10 N@100 P@10 P@100

RT

QMF, 0.1 0.217 0.341 0.008 0.107 0.572 0.638 0.036 0.391 0.568 0.650 0.040 0.413
QMF, 0.25 0.354 0.420 0.016 0.165 0.615 0.694 0.042 0.473 0.592 0.703 0.032 0.490
QMF, 0.5 0.409 0.453 0.017 0.184 0.595 0.715 0.037 0.520 0.563 0.713 0.042 0.523

PMF 0.135 0.130 0.013 0.036 0.085 0.165 0.013 0.044 0.059 0.212 0.018 0.062
QMF+,0.1 0.365 0.487 0.037 0.276 0.593 0.667 0.046 0.434 0.673 0.679 0.073 0.457

QMF+,0.25 0.467 0.528 0.043 0.337 0.674 0.714 0.066 0.512 0.684 0.725 0.061 0.535
QMF+,0.5 0.563 0.543 0.113 0.375 0.614 0.728 0.127 0.525 0.662 0.739 0.139 0.534

LoRec 0.083 0.140 0.013 0.040 0.062 0.186 0.008 0.046 0.079 0.166 0.013 0.044

TP

QMF-0.1 0.272 0.252 0.016 0.048 0.442 0.521 0.017 0.146 0.586 0.670 0.026 0.279
QMF-0.25 0.548 0.472 0.059 0.155 0.650 0.696 0.033 0.313 0.743 0.779 0.067 0.429
QMF-0.5 0.601 0.586 0.078 0.222 0.756 0.779 0.075 0.429 0.779 0.774 0.103 0.410

PMF 0.020 0.052 0.005 0.012 0.041 0.058 0.010 0.018 0.079 0.095 0.016 0.025
QMF+,0.1 0.332 0.301 0.022 0.030 0.501 0.557 0.047 0.201 0.662 0.740 0.064 0.383

QMF+,0.25 0.385 0.342 0.029 0.085 0.559 0.608 0.053 0.245 0.704 0.771 0.077 0.433
QMF+,0.5 0.384 0.369 0.037 0.096 0.616 0.604 0.068 0.244 0.740 0.770 0.099 0.432

LoRec 0.020 0.043 0.006 0.012 0.031 0.061 0.015 0.021 0.058 0.080 0.011 0.023

We also evaluate the recovery accuracy of QMF and QMF+
in comparison to several state-of-the-art web service recom-
mendation schemes, using the relative estimation errors (REs)
on missing entries, which are defined as |Mi,j−M̂i,j |/Mi,j for
(i, j) /∈ Ω. In particular, we compare the following schemes:
• Algorithm 1 (QMF) and its extension (QMF+): for

each algorithm we set three quantiles τ = 0.1, 0.25, 0.5,
which represent the 10% quantile, the first quartile, and
the median, respectively.

• PMF (Probabilistic Matrix Factorization): a widely-
used implementation of the matrix factorization model
[18], which has been used to predict the response times
of web services [13] with a loss function of MSE.

• LoRec [11]: a state-of-the-art web service recommender
system which employs the location information to
enhance QoS prediction accuracy. This collaborative-
filtering-based system predicts QoS metric of a user-
service pair by aggregating the observed values from
similar users, where the similarity between users is de-
fined according to their geo-locations and observed QoS
metrics.

The user-service matrices in the real world are typically
very sparse, since a user may have ever connected to only a
small number of web services. We randomly choose a subset
of observed values in the user-service matrix with different
sampling rate, which is the ratio of the number of known
entries in M to the number of all the entries. In particular,
we randomly set 1%, 10% and 30% of the matrix entries as
observed. Our algorithms and other baseline algorithms are
employed to estimate the missing QoS values and predict the
ranking of web services for each user in the descending order
of the corresponding QoS values. For QMF and QMF+, we
set the dimension of latent feature vectors to r = 10, and
the smooth constant η = 1/ log(|Ω|) as we have discussed
in Sec. II. For PMF, we also set the dimension of latent
feature vectors as r = 10. For QMF+ and LoRec, we only
consider the country in the explicit features of both users and

web services, since the baseline scheme LoRec only considers
location information.

B. Ranking performance

Table I shows the ranking performance in NDCG and preci-
sion of response time and throughput under the sampling rates
of 1%, 10% and 30%. In this table we focus on four metrics:
NDCG@10, NDCG@100, Precision@10 and Precision@100.
We boldface the best performance for each column in the
Table I.

Compared with PMF, which minimizes MSE, Algorithm 1
obtains better prediction accuracy for both response time and
throughput under all settings of τ . Since the data is highly
skewed, our QMF algorithm can estimate different quantiles
which are closer to the center of distribution. In particular, we
observe highest NDCG and precision scores under τ = 0.5
in most cases. This implies that estimating median is more
robust than estimating mean. Similarly, the QMF+ method
which exploits geo-location information outperforms LoRec
under all settings of τ .

By comparing results among QMF and QMF+, it is clear
that the prediction accuracy of QMF+ is further improved
over QMF by exploiting both users and servers location as
side attributes on response time dataset. In particular, we can
see that the improvements of QMF+ are more significant in
low sampling rate 1% than high sampling rates 10% and
30%. When the sampling rate is low, side attributes can help
to provide some initial estimation. Generally speaking, the
number of explicit user features is less than that of users,
and so for services. In addition, we can see that the ranking
performance results from QMF+ methods under all τ ’s are
closer than those from QMF methods, which shows that geo-
location information can help to improve the robustness.

For both QMF and QMF+, we can see that the ranking
results under τ = 0.1 are worse than results under τ = 0.25
and τ = 0.5, since the quantile τ = 0.1 is more extreme
than τ = 0.25 and τ = 0.5 and the estimation under such
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Fig. 2. The CDFs of relative estimation errors of response time on the missing values with sample rate 1%, 10% and 30%.
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Fig. 3. Histograms of residuals via MSE minimization

quantile needs more data. When explicit user features and
explicit service features are incorporated, they can provide
initial estimation and it leads to decrease the demand of
samples and lead to better performance. This is confirmed in
Table I, in which we can see that QMF+ always outperforms
QMF for τ = 0.1, and the improvement of QMF+ from QMF
under the sampling rate 1% is higher than that under the
sampling rate of 10% and 30%.

Now let’s see why our QMF is better in terms of ranking.
We did top r = 10 singular value decomposition (SVD) for
both response time matrix and throughput matrix and we plot
the results in Fig. 3. It is well known that top r SVD of M
provides its best approximation of rank r in terms of Frobenius
norm [19], which is actually the MSE. We plot the residuals
of such method in Fig. 3. In these figures, 90% of residuals of
response time are smaller than 0.8, while the largest residual
can be as large as 19.73. Also, 90% of residuals of throughput
are smaller than 30.75, but the largest residual is 1011. And
now it is clear to see that in these two datasets, the residuals are
still highly skewed. Then we can conclude that if we use the
conditional mean for ranking web services, the results are not

accurate, because centers of these two datasets are distributed
far away from their conditional means.

C. Recovery accuracy

We plot the relative estimation errors on missing response
time in Fig. 2(a)-2(c), and on missing throughput in Fig. 4(a)-
4(c), respectively, under three settings of QMF and PMF. In
Fig. 2(a)-2(c), we can see that PMF is inferior to QMF under
τ = 0.25 and 0.5 because PMF is targeting minimizing MSE
to estimate the conditional mean, but the highly skewness of
response time distribution leads the mean to be far away from
the center. For QMF with τ = 0.1, we can see that there are
fewer small relative errors and large relative errors than others,
and these errors concentrate on a small range, especially under
low sampling rate as shown in Fig. 2(a). For the throughput
results in Fig. 4(a)-4(c), our algorithm is only slightly better
than PMF. We also compare QMF+ under the same setting
with LoRec plotted in Fig. 2(d)-4(f) and Fig. 4(d)-4(f). We
can observe similar results that LoRec is inferior to QMF+
under τ = 0.25 and 0.5.

D. Impact of the latent feature dimension

We further investigate the impact of r, the dimension of
user and service latent feature vectors. In this experiment, we
set the sampling rate to be 10% and compare the median of
relative estimation errors, called median relative error, and
the NDCG@100 score. We test the impact of the dimension
r on both QMF and QMF+ for the response time dataset,
and plot the results in Fig. 5 and Fig. 6, respectively. We can
clearly see that both the ranking precision and the estimation
precision increase as the latent feature dimension increases.
However, when r > 15, the ranking performance almost stops
increasing. In addition, a higher dimension introduces higher
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Fig. 4. The CDFs of relative estimation errors of throughput on the missing values with sample rate 1%, 10% and 30%.
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relative error and NDCG@100.
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Fig. 6. Impact of dimension of latent vectors on QMF+ in terms of median
relative error and NDCG@100.

computational cost. Therefore, we suggest that r should be set
in the range 5–15. The trend shown in these two figures also
holds for other ranking metrics, e.g., precisionk, and for other
estimation error metrics, e.g., mean relative errors. The results
on the throughput dataset are similar and omitted due to the
space limit.

VI. RELATED WORK

Early work on Internet latency estimation was mainly based
on network coordinate systems (NCSs), which embed Internet
hosts into a coordinate system such as a Euclidean space and
predict the latency between a pair of hosts by calculating their
corresponding distance [20] in the embedded space. However,
most existing NCSs (e.g., Vivaldi [6], GNP [21]) use Euclidean
embedding and thus cannot model triangle inequality violation
(TIV), which has been widely reported [22], [23] on the
Internet.

A popular approach to QoS prediction for web services
is collaborative filtering or collaborative prediction, typically
represented by the neighbor-based method, including the user-
based and the item-based approaches, which calculates simi-
larities between users or between services based on partially
observed QoS measurements. For example, a user-based ap-
proach has been proposed in [24] that predicts the missing
QoS of a user-service pair based on the QoS experiences of
other similar users in the past, where user similarities are
computed according to their QoS values to the same web
services. A hybrid collaborative QoS estimation method has
been proposed in [25], which combines the user-based and
item-based approaches. Furthermore, [11] proposes a method
which exploits the location information as well as the observed
QoS parameters for service recommendation.

Another type of methods, namely matrix completion and
matrix factorization, has recently gained enormous success in
solving both collaborative filtering recommendation problems
[26] and network latency estimation problems. In matrix fac-
torization, the QoS matrix is factorized into two latent feature
matrices, one for users and another for services, and each QoS
value is estimated by the inner product of the latent feature



vectors of the corresponding user and service. For network
latency prediction, DMFSGD [7] successfully uses matrix
factorization to estimate the latencies between Internet hosts
and achieves a lower prediction error than network coordinate
systems. A hybrid method combining Euclidean embedding
and matrix factorization has been proposed in [8] to predict
latencies between personal devices including mobile devices.
The matrix factorization approach has also been adopted for
web service recommendation in [13].

However, all existing matrix factorization techniques at-
tempt to minimize the mean squared error (MSE) and thus
only estimate the mean QoS statistics, which can be far away
from the center of the distribution of response times (or
throughput), if the distribution is heavy-tailed. The proposed
QMF solves this issue by estimating the median QoS values,
which better model the most frequent QoS values between
users and services and are therefore more robust to outliers.
In the meantime, we can also obtain a full picture of QoS
estimates by setting different levels of quantiles.

VII. CONCLUDING REMARKS

In this paper, we propose a personalized web service
recommendation method based on the effective estimation
of response times and throughput. Since it is impractical to
measure such QoS values for all pairs of user and web service,
we estimate the unknown values from partially observed
ones via matrix completion. Compared with existing popular
matrix factorization approaches, which aim at minimizing
the mean squared error and actually estimate the conditional
means of the QoS values, we propose the Quantile Matrix
Factorization (QMF) which novelly combines the quantile
regression technique and matrix factorization. We propose
an efficient algorithm based on Iterative Reweighted Least
Squares (IRLS) to solve QMF and further extend our model
to take explicit attributes on both the user and web service
sides into account. Extensive evaluations based on a real-
world dataset of web service QoS measurements show that
QMF significantly outperforms several state-of-the-art QoS
prediction and recommendation algorithms based on matrix
factorization or collaborative filtering, especially in terms
of excluding services with the highest response times and
selecting the best services. Furthermore, the prediction and
ranking performance of QMF and QMF+ is particularly robust
to the skewed QoS data.
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