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Abstract—The problem of secure distributed storage systems
(DSS) with regenerating codes is concerned in this paper. We
consider an eavesdropper model where an eavesdropper wiretaps
a subset of storage nodes, and either their repairing data or stored
data can be wiretapped. We focus on two typical and special
cases, the Minimum Bandwidth Repair (MBR) and the Minimum
Storage Repair (MSR). Our main contribution is to draw a
connection between this problem and secure network coding
theory introduced by Cai and Yeung, and the secrecy capacity
can be determined in this method. We prove that for both MBR
and MSR cases, if the maximal wiretapped information rate can
be determined, the secrecy capacity can be achieved by linear
secure network coding. Particularly, a static exact regenerating
code can be transformed into a secure regenerating code for the
MBR and MSR cases.

I. INTRODUCTION

The demand for huge volumes’ data, driven by distributed
(cloud) computing, social networks, data sharing, etc., has
increased in the past decades. These applications call for
a reliable and secure storage system, and then distributed
storage systems are becoming the de-facto mechanism for
large scale data storage systems. In a distributed storage
system (DSS), the massive source data should be dispersed
and/or encoded into many smaller components to be stored in
a storage node. The storage systems are vulnerable to security
breaches for node failure and potential eavesdroppers, and
coding approaches can improve the resilience to these threats.

Recent years have witnessed the development of network
coding theory and techniques for distributed storage systems.
The paradigm of network coding [1], [2] has provided rich
source of new problems that generalize traditional problems
in communications, followed by a large body of further work
in the literature. In [3], Dimakis et al. introduced the theory of
regenerating codes. Formally, consider a DSS with n storage
nodes. The user then downloads the source data by connecting
to any k storage nodes and decoding the received data. Such
property is also called (n, k) MDS property and will be
introduced formally in the subsequent section. If the user (or
Data Collector, DC) directly connects to these n nodes to
download a file, any node failure would cause the breakdown
of the DSS. Thus, redundancy is introduced into the system to
improve reliability against node failures and coding technique
can improve the performance.

With the increasing awareness of data security and privacy
protection, developing secure distributed storage systems have
attracted attentions of researchers and engineers. The main
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Fig. 1: A simple model for DSS

threats to a DSS are potential eavesdroppers and adversarial
attacks. Cai and Yeung proposed their pioneer work on secure
network coding in [4] and later published in [5]. Their work
shows that the maximum achievable rate (i.e. the secrecy
capacity) for this problem is given by n−r packets if the field
size q is sufficiently large, where r is the maximal edges the
eavesdroppers can access. When the collection of wiretapping
sets is arbitrary, Cui et al. presented the cutset bound in [6] and
proposed that this upper bound is unachievable for some cases.
They also proved the NP-hardness of deriving the secrecy
capacity for arbitrary wiretapping set eavesdroppers.

The secure distributed storage system against eavesdroppers
with the read-access to any l(< k) storage nodes has been
studied in detail by Pawar et al. [7]. They proposed an upper
bound of secrecy capacity for this model and proved that for
a special regime called bandwidth-limited regime, their bound
is tight by providing an explicit coding scheme. Later in [8],
Shah et al. proposed a generalized type of eavesdroppers,
called (l, l′) eavesdroppers, with the read-access of l storage
nodes and l′ of these nodes are wiretapped during repairing.
They also designed secure distributed storage codes at the
Minimum Bandwidth Repair (MBR) point and the Minimum
Storage Repair (MSR) point. For the MBR point, their code
can prevent any eavesdroppers with l < k and l′ ≤ l for all
(n, k, d). For the MSR point, their code can be constructed at
(n, k, d ≥ 2k − 2) for all (l, l′), but the secure optimality is
only proved for l′ = 0 in their paper. The recent unpublised



work [9] by Rawat et al. derived a new upper bound for
secrecy capacity, which proved the optimality of Shah’s code
for l′ = 1. Their work also included a new type of secure
regenerating codes for MSR, achieving the capacity when
d = n − 1 and l′ ≤ 2 motivated by Maximal Rank Distance
codes [10] and Zigzag codes [11].

In this paper, we address the problem of secure distributed
storage systems using regenerating codes. Our main contribu-
tion is to prove that the upper bound in [9] is tight at the MSR
point for all (n, k, d) and any (l, l′) eavesdroppers, making
the secrecy capacity be determined. We firstly present the
DSS model and the eavesdroppers model under information-
theoretic framework. For practical consideration, we focus on
two special cases: the systems at the MBR and MSR points.
There have been increasing attention on these two cases for
their optimality and many good exact repair codes have been
found, facilitating the study of secure distributed storage codes.

This paper is organized as follows. In Section II we describe
the system and the eavesdroppers model. We present our main
general approach in Section III. In Section IV, we study the
secure distributed storage systems for MBR and MSR systems.
The paper is concluded in Section V.

II. MODELS AND NOTATIONS

In this section, we propose a formal description of dis-
tributed storage system with regenerating codes. A DSS con-
sists of a source file M , n storage nodes (we call them Storage
Node Set N ) and some potential user nodes (or Data Collector,
DC). Each of the storage node has a storage capacity of α.
With entropy functions we rewrite it as

H(Yi) = α

where Yi denotes the data stored in node i. A DC can
reconstruct the source file M by connecting to any k storage
nodes and this property is called (n, k) MDS Property. Under
the information theory framework, we have:

H(M |YK) = 0, for all K ⊆ N , |K| = k, (1)

where |K| indicates the cardinality of the set K, and we call
K as the Download Node Set.

If a storage node i is failed, the newcomer i′ will connect
to any other d(≥ k) nodes to recover the failed data. We
focus on single node repairing. (For multi-node repairing, we
refer readers to literature about Coordinated Repairing [12], or
Cooperative Repairing [13]). The set of nodes participating in
repairing node i is denoted as Di (we call Di the Helper Node
Set) and we may drop the lower index i without ambiguity
in some cases. We denote Ŷi as data after repairing node
i. If Ŷi is always identical with Yi, we call Exact Repair;
otherwise, we call the repairing as Functional Repair. During
the repairing procedure, node j transmits data Si

j to node i
and the communication bandwidth is denoted as β:

H(Si
j) = β.

We denote Si
A as the set of data from a set of storage nodes

A to storage node i and SA
j as the set of data from j to A as

follows:

Si
A ≜ {Si

m}m∈A,

SA
j ≜ {Sm

j }m∈A.

From the network coding perspective, Si
A consists of informa-

tion symbols on incoming edges of i from node set A and SA
j

consists of symbols on outcoming edges of j to the node set
A. If the repairing symbols Si

D is irrelevant with the choice
of helper node set D for all node i at any time, we call this
special regenerating code as Static Regenerating Code. Under
the information theory framework, the symbols Si

m from node
m should be a function of Ym, and the recovering data Ŷi

should be a function of all helping symbols Si
D. That is,

H(Si
m|Ym) = 0, (2)

H(Ŷi|Si
Di
) = 0. (3)

A. The Properties for MBR and MSR

Both the work of [3] and [14] explained the cutset bound(or
min-cut analysis) for the distributed storage model. The cutset
bound is as follows:

M ≤
k∑

i=1

min{α, (d− i+ 1)β}. (4)

And [3] showed that this bound is achievable by functional
repair codes based on random network coding. Based on this
bound, they found a storage-bandwidth tradeoff curve given
the maximal file size M. A tradeoff curve can be established
from the cutset bound (4). For the optimal repairing scheme,
the storage capacity α ranges from (d− k + 1)β to dβ:

(d− k + 1)β ≤ α ≤ dβ

Two edge points in the tradeoff curve indicate optimality
in storage capacity and repair bandwidth. For α = dβ, the
repairing bandwidth γ = dβ meets the smallest value α, and
it is the MBR case; for α = (d−k+1)β, the storage capacity
is M/k and this is the minimum storage per node, the MSR
case. Both of these definitions were proposed in [3].

For the sake of convenience, we may call a DSS as an
MBR system if the parameters α, β are at the MBR point
of the storage-capacity tradeoff curve. The MSR system is
similarly defined as the MBR system. Also, the MBR case
and the MSR case refer to storage systems at the MBR and
MSR point, respectively.

B. Eavesdropper Model

In this paper, we consider the (l, l′) eavesdropper proposed
by Shah et al. in [8]. Their definition is generalized from Pawar
et al. in [7], which defined an eavesdropper with the read-
access of l(< k) storage nodes at any time. The eavesdropper
can wiretap them among the initial n storage nodes, or to wait
for failures and eavesdrop on their repairing data. For an (l, l′)
eavesdropper, he/she can wiretap l storage data and access
both the storage and repairing data at l′ nodes of them. In
the subsequent sections, we always denote the set of l storage
nodes as E and the set of wiretapped l′ storage nodes during



repairing as E ′, i.e. E ′ ⊆ E . The symbols ZE denote the data
received by the eavesdropper when he/she wiretaps the storage
node set E .

To protect storage data against eavesdroppers, the source
data M should be randomized by a random key K, which is
independent of the message. The stored data Yi is encoded
and distributed by both M and K:

H(Yi|M,K) = 0, i ∈ N . (5)

Our target is to store the source file M under Perfect Secrecy
conditon, i.e.

H(M |ZE) = H(M). (6)

Given a distributed storage system with parameter (n, k, d)
and an (l, l′)-eavesdropper, its secrecy capacity, denoted as
Cs, is defined as the maximum amount of stored data such
that the reconstruction, repairable and secure property are
simutaneously satisfied for all possible data collectors and
eavesdroppers. The secrecy condition is defined as follows
(similar definition from [7])

Cs(α, β) ≜ sup
K,E:(1),(6)hold

H(M). (7)

For the sake of convenience, we may denote Cs instead of
Cs(α, β) in most cases.

III. APPROACH

In this section, we propose our main framework in studying
the security problem of distributed storage systems. According
to the study of secure network coding by Tao et al. in [6],
the problem to determine the secrecy capacity of arbitrary
wiretapping set is NP hard. The eavesdropper model in this
paper can be equivalent with a node-wise wiretapper in the
information flow graph in [3] as follows: a wiretapped storage
node during its repairing can be regarded as the eavesdrop-
per wiretaps the “in” node; otherwise, for stored data, it is
equivalent with wiretapping “out” node. Yet few results for
this node-wise eavesdropper model have been found in the
literature. However, the following theorem indicates that, if
all information on edges in a wiretapping set is a function
(or combination) of that on edges in a minimum cut, the
problem can be equivalent with linear secure network against
r-eavesdropper [5], which can wiretap any r edges in a
network.

Theorem 1. Suppose the eavesdropper wiretaps a subset of
nodes denoted as E . If H(ZE |YK) = 0, i.e. all wiretapping
data are a function of stored data in any k storage nodes,
then the secrecy capacity can be derived as follows:

Cs = M−max
E

H(ZE) (8)

where M is the storage capacity from the cutset bound in Eq.
(4).

Proof:
Direct part: Since an r-secure network coding can prevent
the collection of all subsets of channels with cardinality not

exceeding r, the transformation can be obtained if H(ZE) is
determined.
Converse part: Suppose the eavesdropper wiretaps the set E of
survival nodes. Let K be any k nodes out of n storage nodes
in the system. Thus, we can derive the secrecy rate by

H(M) = H(M |ZE)−H(M |ZE , YK) (9)
= I(M ;YK|ZE) (10)
≤ H(YK|ZE) (11)
= H(ZE |YK) +H(YK)−H(ZE) (12)
= H(YK)−H(ZE) (13)
= M−H(ZE). (14)

By expanding H(YK, ZE) in two ways, Eq.(12) can be derived.
Eq. (13) is from the condition H(ZE |YK) = 0. The converse
part then can be directly proved by Eq. (14).

Here we indicate the relationship between Theorem 1
and linear secure network coding by Cai and Yeung. If the
eavesdropper wiretaps r edges, he/she can wiretap at most
r symbols in the network. Denoted as H(ZW), where W is
representing the wiretapped edges and ZW is a collection of
wiretapped symbols, we have H(ZW) ≤ r and the identity
holds when edges in W are all included in a minimum cut and
thus r random keys are necessary to prevent it. In Theorem 1,
ZE plays the same role of r wiretapped edges, and thus the
secure network coding can work with r random keys mixed
in the source node.

In [15] and later in [7], Pawar et al. proposed an upper
bound against eavesdropper if no more than l nodes are
wiretapped. The upper bound is as follows:

Cs ≤
k∑

i=l+1

min{α, (d− i+ 1)β} (15)

This upper bound is achievable for MBR by Shah et al. in [8],
but it seems hard to find a proper code to achieve this upper
bound for the MSR point. We will analyze this phenomenon
in the next section. The key step is to evaluate whether the
condition H(ZE |YK) = 0 holds for these two cases. If so, the
secrecy capacity is only associated with the accurate value of
H(ZE).

IV. TWO SPECIAL CASES: MBR AND MSR

In this section, we study the security problem for two special
distributed storage systems, MBR and MSR. These two cases
are optimal in repairing bandwidth and storage, respectively,
and then attract most attention to study. In the subsequent
analysis of these two cases, the wiretapped data can be proved
to be a function of information on edges in a minimum cut.
The problem of secrecy capacity is then directly reduced into
determining the wiretapped information rate H(ZE).

With the knowledge of H(ZE), the secrecy capacity ap-
proach code can be established by precoding at the source node
along with “proper” exact regenerating codes. The “proper”
regenerating codes are defined for those exact repair codes,
which the repairing data for a particular node i, Si

D, is



independent with the choice of helper node set. This property
is motivated by secure regenerating codes designed in [8],
where both MBR and MSR codes are exact repair codes and
information downloaded by the replacement node is designed
to be independent of the helper node set.

A. The MBR Case

Next, we attempt to study the secrecy rate for the MBR
systems. For the MBR case, we have

H(YK) =
k∑

i=1

(d− i+ 1)β ≥ H(SK
D). (16)

And, from 2, we have

H(YK|SK
D) = 0, (17)

H(YK) ≤ H(YK, S
K
D) = H(SK

D). (18)

Combining (16), (17) and (18), it suffices to imply that
storage data YK are identical with their repairing data under
some invertible transformations, i.e., H(YK|SK

D) = 0 and
H(SK

D |YK) = 0. Thus, we have

H(ZE |YK) ≤ H(ZE |SK
D) (19)

= 0. (20)

Here we can find that for MBR systems, any static exact
MBR code can be linearly transformed into a secure MBR
code. For each MBR exact repair code, the storage data of
node l and the repairing data Sl

D can be linearly transformed
by invertible linear transformation. It implies that repairing
data for exact MBR can be independent with the choice of D.
Thus, an exact MBR code is actually a static MBR code, and
the following theorem can be proved.

Theorem 2. Any MBR exact repair code can be linearly trans-
formed into a secure MBR code for all (l, l′) eavesdropper, and
it is a static regenerating code.

B. The MSR Case

Theorem 2 and a practical code proposed by Shah et al.
in [8] can solve the security problems for MBR cases. For
MSR cases, the minimum cuts in the information flow graph
are all storage edges. Then, when the eavesdropper wiretaps
the repairing symbols, he/she can receive more symbols than
a storage node and lead to worse situation. In this case, we
cannot directly find the characterization of secrecy capacity by
the cutset bound.

In this subsection, we solve this problem in the following
way. Firstly, we revisited the upper bound in [9] by Rawat
et al. This upper bound has an very intuitive description
motivating us to prove its tightness. Then, we prove that
repairing data must be the function of storage data in any
k nodes. This is equivalent to check whether H(ZE |YK) = 0.
At last, by Theorem 1, the upper bound can be achieved with
randomness mixture at the source node and employing the
static regenerating code. For d = n− 1, the exact repair code
is static since the only choice for the helper node set is to

choose all other surviving nodes. For d < n−1, the existence
of such exact code can be found in [8], although their code is
not optimal for l′ ≥ 2.

In recent unpublished work [9], the authors presented a
new upper bound for H(M) and designed a Interference-
Alignment based code to achieve such upper bound when
d = n−1. Here we denote the l wiretapped nodes as the set E
and the set of l′ node, whose repairing data were wiretapped,
is denoted as E ′. The proposed upper bound is as follows:

Theorem 3. [9] For a bandwidth efficient repairable (n, k)
MDS code, we have

Cs ≤
∑

i∈K\E

(
α−H(SE′

i )
)
. (21)

This upper bound can be intuitively interpreted in the fol-
lowing way. For those secure nodes (which is not wiretapped)
in K, denoted as K\E , each of them can contribute to secure
rate by H(Yi|SE′

i ), which equals to α − H(SE′

i ). Note that
their bound can be derived under functional repair.

Theorem 4. For a MSR distributed storage system under exact
repair, any collection K of k storage nodes, repairing symbols
Si
m is a function of stored data in K, where i ∈ K and m ̸= i.

Note that the proof seems to be trival since any k storage
nodes can reconstruct the source file. However, as Cui et al.
proposed in their paper [6], the terminal node in a wiretapped
network is not necessarily to receive all random keys, and
key cancellation can enhance secrecy rate in some cases.
The essential is that secure multicast problem is equivalent
to broadcasting rather than multicasting, since the source
message M can be equivalent with the common message and
random keys are sort of private messages. Before the proof of
this theorem, we need to recall a varied version of the data
processing inequality to facilitate the proof.

Lemma 1. If Z is a function of U and V , then H(U, V ) ≥
H(V, Z).

Proof: The condition is equivalent to H(Z|U, V ) = 0
and thus we have H(U, V, Z) = H(Z|U, V ) + H(U, V ) =
H(U, V ). Since H(U, V, Z) ≥ H(V, Z), we then have
H(U, V ) ≥ H(V,Z).

Proof of Theorem 4: Let i be the failed node and m be
an arbitrary helper node of i. Choose another k − 1 storage
nodes with i to be the set K. We assume that m /∈ K, since
H(Si

m|YK) = 0 for m ∈ K. Let B be another d − k helper
nodes except those in K and the node m. Then we have:

H(Si
m, YK)

= H(Si
m, Yi, YK\i) (22)

≤ H(Si
m, Si

B, S
i
K\i, YK\i) (23)

= H(Si
m, Si

B, YK\i) (24)

≤ H(Si
m∪B) +H(YK\i) (25)

≤ (d− k + 1)β + (k − 1)α (26)
= kα. (27)



Eq. (23) follows by the repairing equation
H(Yi|Si

m, Si
B, S

i
K\i) = 0 and substituting variables

U = (Si
B, S

i
K\i),V = Si

m and Z = Yi into Lemma 1.
Eq. (24) follows from H(Si

K\i|YK\i) = 0, and Eq. (25)
follows from the Independence bound on entropy, or the
chain rule of joint entropy. On the other hand, we also have

H(Si
m, YK) ≥ H(YK) (28)

= kα. (29)

Then it must be that H(Si
m, YK) = H(YK), which leads to

H(Si
m|YK) = 0.

Along with Theorem 1, we can conclude that for MSR under
exact repair, the secrecy capacity is only associate with the
minimum H(ZE), the rate of wiretapped information. Thus,
for (l, l′) eavesdropper, we can estimate a lower bound for
H(ZE):

max
E

H(ZE) ≥ lα+H(SE′

K\E). (30)

If the upper bound could be achieved, Eq. (30) should attain
the identity and it is the target for the following part of this
subsection.

Lemma 2. For a (n, k, d) MSR distributed storage system, if
the node i is failed and the helper node set is D. Let A be
a subset of D with the cardinality of k − 1, and B be the
complement of A in D. Thus we have

H(Si
B|Yi, S

i
A) = 0. (31)

Proof: As the lemma stated, we separate D as two sets:A
and B and |A| = k − 1, |B| = d− k + 1. Then, we have:

I(Si
B;Yi, S

i
A) = I(Si

B;S
i
A) + I(Si

B;Yi|Si
A) (32)

≥ I(Si
B;Yi|Si

A) (33)
= H(Yi|Si

A). (34)

For the MSR system, storage data in any k storage nodes are
mutually independent, which leads to the mutual independence
of elements in YA and Yi

1 (and also for Si
A and Yi

2 ). Thus
we have:

H(Yi|Si
A) = H(Yi) (35)

= (d− k + 1)β (36)

and
I(Si

B;Yi, S
i
A) ≥ α = (d− k + 1)β. (37)

On the other hand, we have

I(Si
B;Yi, S

i
A)

≤ H(Si
B) (38)

≤ (d− k + 1)β. (39)

1For a subset of k storage nodes in an MSR system, we have H(YK) =
kα =

∑
i∈K H(Yi). Thus, for any i, j ∈ K, Yi and Yj are independent. It

also holds for Yi and YA if |A| < k.
2If I(Yi;YA) = 0, since H(Si

A|YA) = 0, we have I(Si
A;Yi) ≤

I(YA;Yj) = 0 by data processing inequality, which implies the independence
between Si

A and Yi.

Then, it must be that I(Si
B;Yi, S

i
A) = (d−k+1)β = H(Si

B),
which leads to

H(Si
B|Yi, S

i
A) = H(Si

B)− I(Si
B;Yi, S

i
A) (40)

= 0. (41)

Then Lemma 2 can be directly derived by Eq. (41).

Lemma 3. For a secure MSR regenerating code against (l, l′)
eavesdropper, if it is an exact repair code and the repairing
data for each node is independent of the helper node set, the
maximal wiretapped information rate H(ZE) is given by

max
E

H(ZE) = lα+H(SE′

K\E). (42)

Proof: From Eq. (30), we only need to prove the converse
part:

H(ZE) ≤ lα+H(SE′

K\E).

Without loss of generality, let K be the first k storage nodes:
1, 2, . . . , k; let E denote the first l storage nodes: 1, 2, . . . , l;
and let E ′ denote the first l′ storage nodes: 1, 2, . . . , l′, i.e.,
E ′ ⊆ E . According to the statement, the secrecy capacity
approach code should satisfy that Si

D are independent with
D. Thus, we assume that for each node i, k − 1 of helper
nodes are from K\i, and the rest d − k + 1 nodes are from
the same set B. We thus have

H(ZE)

≤ H(SE′

D , YE\E′) (43)

= H(SE′

K\E , S
E′

E , SE′

D\K, YE\E′) (44)

= H(SE′

K\E , S
E′

E , SE′

D\K, YE\E′ , YE′) (45)

= H(SE′

K\E , S
E′

D\K, YE) (46)

= H(SE′

D\K|S
E′

K\E , YE) +H(SE′

K\E , YE). (47)

Eq. (44) follows from separating the helper node set D into
three parts E ,K\E ,D\K. Eq. (45) follows from the repair-
ing procedure H(YE′ |SE′

D ) = 0 and Eq. (46) follows from
H(SE′

E |YE) = 0. Now we focus on the first term of Eq. (47).
By Lemma 2, for each i ∈ E ′, we have

H(Si
D\K|YE , S

i
K\E) (48)

= H(Si
D\K|Yi, YE\i, S

i
K\E) (49)

≤ H(Si
D\K|Yi, S

i
E\i, S

i
K\E) = 0. (50)

That is, H(Si
D\K|YE , S

i
K\E) = 0. Thus, we have

H(SE′

D\K|YE , S
E′

K\E) ≤
∑
i∈E′

H(Si
D\K|YE , S

E′

K\E) (51)

≤
∑
i∈E′

H(Si
D\K|YE , S

i
K\E) (52)

= 0. (53)

Substituting Eq. (53) into Eq. (47), we have

H(ZE) ≤ H(SE′

K\E , YE) (54)

≤ H(SE′

K\E) +H(YE) (55)

= lα+H(SE′

K\E). (56)



The lemma then directly holds from Eq. (56).
From Lemma 3, we can conclude that for each secure

exact repair code with the independence of identities of helper
nodes, the maximal wiretapped rate can be estimated. We
can give an alternative form of MSR secrecy capacity by the
following theorem.

Theorem 5. For a bandwidth efficient repairable (n, k) MDS
code at MSR point, the upper bound (21) is tight and the
secrecy capacity can be found if for any node i and E ′, H(SE′

i )
is minimized.

C. Discussions

Functional repair and exact repair are two typical repairing
types for regenerating codes. In the pioneer work by Dimakis
et al., their bound is derived by functional repair, which
can be equivalent with a multicast problem. However, Shah
et al. proved in [14] that only MBR and MSR points in
storage-bandwidth tradeoff curve can be met for exact repair.
Most exact repair codes are algebraic constructed with explicit
structures, and have advantages over random network coding
based funtional repair. The exact repair codes also transcend
the limitations of random network coding based functional
code in a secure DSS. This phenomena is described in [15] and
later in [7] by giving an example. Their idea can be illustrated
as the following fact: if a node fails frequently, for example,
t times, the eavesdropper can receive tγ = tdβ symbols and
they are mutually linearly independent with high probability
for systems using random network coding. It motivates us to
answer such question: is the secrecy capacity for functional
repair as same as that of exact repair?

From our analysis of two special cases, MBR and MSR, we
can conclude that for those two cases, the answer is yes. For
MBR, we prove that any exact MBR code can be transformed
into a secure code; for MSR, we prove that the static exact
repair code can achieve the secrecy capacity. Since the exact
repair can be regarded as a special case of functional case, if
an exact repair code can achieve the secrecy capacity under
functional repair, the equality of secrecy capacity for both
functional repair and exact repair is proved. Thus, for practical
consideration, designing a proper exact repairing code is the
main objective for secure distributed storage systems.

V. CONCLUSION

In this paper we consider secure regenerating codes for
dynamic distributed storage systems. Our main objective is to
investigate characteristics and conditions for secure regenerat-
ing codes, and focuses on two special cases: MBR and MSR.
We draw a connection between secure regenerating codes and
secure network codes by Cai and Yeung in [5] to determine
the secrecy capacity. For MBR, the exact MBR code is static
since repairing data is identical with storage data, which also
implies that wiretapped data are always a function of storage
data in any k storage nodes. For MSR, we prove that a new
upper bound proposed in [9] is tight for MSR codes. Our proof
is based on the analysis of static exact regenerating codes, in
which repairing data for a particular node is independent with

the choice of helper node set D. With randomness mixture
before storage encoding, the upper bound is achievable and
it implies that the biggest challenge in secure MSR code
constructing is to minimize the rate of repairing data from
any node i to any other l′ node.
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