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Abstract— Network latency prediction is important for server
selection and quality-of-service estimation in real-time applica-
tions on the Internet. Traditional network latency prediction
schemes attempt to estimate the latencies between all pairs
of nodes in a network based on sampled round-trip times,
through either Euclidean embedding or matrix factorization.
However, these schemes become less effective in terms of esti-
mating the latencies of personal devices, due to unstable and
time-varying network conditions, triangle inequality violation
and the unknown ranks of latency matrices. In this paper,
we propose a matrix completion approach to network latency
estimation. Specifically, we propose a new class of low-rank
matrix completion algorithms, which predicts the missing entries
in an extracted “network feature matrix” by iteratively mini-
mizing a weighted Schatten-p norm to approximate the rank.
Simulations on true low-rank matrices show that our new
algorithm achieves better and more robust performance than
multiple state-of-the-art matrix completion algorithms in the
presence of noise. We further enhance latency estimation based
on multiple “frames” of latency matrices measured in the past,
and extend the proposed matrix completion scheme to the case
of 3-D tensor completion. Extensive performance evaluations
driven by real-world latency measurements collected from the
Seattle platform show that our proposed approaches signifi-
cantly outperform various state-of-the-art network latency esti-
mation techniques, especially for networks that contain personal
devices.

Index Terms— Matrix completion, internet latency estimation,
personal devices.

I. INTRODUCTION

NETWORK latency and proximity estimation has been
an important topic in networking research that can

benefit server selection, facility placement, and quality-of-
service (QoS) estimation for latency-sensitive applications
running on either desktops or mobile devices. A popular idea
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to estimate pairwise latencies in a large network is to partially
measure end-to-end round-trip times (RTTs) between some
nodes, based on which the latencies between all the nodes can
be inferred.

Prior research on network latency prediction mainly falls
into two categories: Euclidean embedding and matrix factor-
ization. The Euclidean embedding approach (e.g., Vivaldi [1],
GNP [2]) aims to map network nodes onto the coordinates
in a Euclidean space or in a similar space with a predefined
structure, such that their distances in the space predict their
latencies. However, it is generally believed [3]–[5] that the
triangle inequality may not hold for latencies among end users
at the edge of the Internet, and thus the Euclidean assumptions
do not hold. The matrix factorization approach [3] models
an n × n network latency matrix M as the product of two
factor matrices with lower dimensions, i.e., M = UV �, where
U ∈ R

n×r and V ∈ R
n×r, r being the rank of M . However,

in reality, it is hard to know the exact rank r of the true
latency matrix from noisy measurements. In fact, raw RTT
measurements usually have full rank.

Network latency estimation is further complicated by the
increasing popularity of personal devices, including laptops,
smart phones and tablets [6]. Based on latency measure-
ments collected from Seattle [7], which is an educational
and research platform of open cloud computing and peer-
to-peer computing consisting of laptops, phones, and desk-
tops donated by users, we observe different characteristics
of latencies as compared to those measured from desktops,
e.g., from PlanetLab. First, not only do Seattle nodes have
longer pairwise latencies with a larger variance, but there are
also more observations of triangle inequality violation (TIV)
and asymmetric RTTs in Seattle. Second, as many personal
devices in Seattle mainly communicate wirelessly with less
stable Internet connections, their pairwise latencies may vary
substantially over time due to changing network conditions.

In this paper, we study the problem of network latency esti-
mation for personal device networks, using a matrix comple-
tion approach to overcome the shortcomings of both Euclidean
embedding and the fixed-rank assumption in latency matrices.
Our contributions are manifold:

First, we propose a simple network feature extraction pro-
cedure that can decompose an incomplete n × n RTT mea-
surement matrix M among n nodes into a complete distance
matrix D that models the Euclidean component in latencies
and an incomplete low-rank network feature matrix F that
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models correlated network connectivities. Matrix completion
can then be applied to the noisy network feature matrix F
to recover missing entries. Based on the analysis of mea-
surements collected from Seattle, we show that the extracted
network feature matrices have more salient low-rank properties
than raw RTT matrices.

Second, to complete the extracted network feature matrix F ,
we solve a rank minimization problem without requiring a
priori knowledge about the rank of F . We propose a new
class of algorithms, called Iterative weighted Schatten-p norm
minimization (IS-p), with 1 ≤ p ≤ 2, to approximate rank
minimization with weighted Schatten-p norm minimization,
with p = 1 representing the nuclear norm that achieves
better approximation to the rank, and p = 2 representing
the Frobenius norm with more efficient computation. The
proposed algorithm turns out to be a generalization of a
number of previously proposed iterative re-weighted algo-
rithms [8] based on either only the nuclear norm or only
the Frobenius norm to a flexible class of algorithms that can
trade optimization accuracy off for computational efficiency,
depending on the application requirements. We prove that
our algorithms can converge for any p between 1 and 2.
Simulations based on synthesized low-rank matrices have
shown that our algorithms are more robust than a number of
state-of-the-art matrix completion algorithms, including Singu-
lar Value Thresholding (SVT) [9], Iterative Reweighted Least
Squares Minimization (IRLS-p) [8] and DMFSGD Matrix
Completion [3], in both noisy and noiseless scenarios.

Third, we propose to enhance the latency estimates for the
current timeframe based on historical latencies via approxi-
mate tensor completion. Specifically, we model the evolving
n × n latency matrices over different time periods as a 3D
tensor, based on which the extracted 3D network feature tensor
F has a certain “low-rank” property. Similar to rank minimiza-
tion in matrix completion, to complete the missing entries in
a tensor and especially those in the current timeframe, we
minimize a weighted sum of the ranks of three matrices,
each unfolded from the tensor along a different dimension.
We then extend the proposed IS-p algorithm to solve this
approximate tensor completion problem, which again leads to
convex optimization that can be efficiently solved.

We perform extensive performance evaluation based on a
large number of RTT measurements that we collected from
both Seattle and PlanetLab. These datasets are made publicly
available [10] for future research. We show that our proposed
matrix completion approach with network feature extraction
significantly outperforms state-of-the-art static latency predic-
tion techniques, including matrix factorization and Vivaldi
with a high dimension, on the Seattle dataset of personal
devices. The proposed convex approximation to low-rank
tensor completion based on 3D sampled measurements can
further substantially enhance the estimation accuracy of time-
varying network latencies.

The remainder of this paper is organized as follows. Sec. II
reviews the related literature, followed by a comparison of
latency measurements in Seattle and PlanetLab in Sec. III
to motivate our studies. In Sec. IV, we propose a distance-
feature decomposition procedure to extract the network feature

Fig. 1. RTT distributions in Seattle and PlanetLab. a) CDFs of all measured
RTTs. b) CDFs of the maximum RTT measured for each pair of nodes.

matrices from raw RTT measurements. In Sec. V, we pro-
pose a new family of rank minimization algorithms to fully
recover the network feature matrix. In Sec. VI, we extend
our algorithms to the case of approximate tensor completion,
which further enhances latency estimation based on historical
measurements. In Sec. VII, we evaluate the performance of the
proposed algorithms based on real-world datasets, in compar-
ison with state-of-the-art algorithms. The paper is concluded
in Sec. VIII.

II. RELATION TO PRIOR WORK

Network coordinate systems (NCSs) embed hosts into a
coordinate space such as Euclidean space, and predict latencies
by the coordinate distances between hosts [11]. In this way,
explicit measurements are not required to predict latencies.
Most of the existing NCSs, such as Vivaldi [1], GNP [2],
rely on the Euclidean embedding model. However, such
systems suffer from a common drawback that the predicted
distances among every three hosts have to satisfy the triangle
inequality, which does not always hold in practice. Many
studies [12], [13] have reported the wide existence of triangle
inequality violations (TIV) on the Internet.

To overcome the TIV problem, some other techniques have
been proposed recently. The idea of compressive sensing is to
recover a sparse vector from partial observations, and has been
used to interpolate network latencies [14]. Another emerging
technique is matrix completion, which aims to recover the low-
rank network distance matrix from partially sampled values
in the matrix. One approach to solving matrix completion
problems is matrix factorization [15], which assumes the
matrix to be recovered has a certain fixed rank. This approach
has recently been applied to network latency estimation [3].
The estimated distances via matrix factorization do not have to
satisfy the triangle inequality. However, these systems actually
do not outperform Euclidean embedding models significantly,
due to the reported problems such as prediction error prop-
agation [4]. Besides, without considering the geographical
distances between hosts that dictate propagation delays, they
have missed a major chunk of useful information.

Another popular approach to matrix completion problems
is to minimize the rank of an incomplete matrix subject to
bounded deviation from known entries [16]. The advantage
of this approach is that it does not assume the matrix has a
known fixed rank. Some recent studies [17], [18] adopt rank
minimization to recover unknown network latencies. In this
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Fig. 2. Properties of Seattle and PlanetLab RTT matrices, in terms of asymmetry as well as rank properties before and after feature extraction.
(a) |RTT(i, j) − RTT(j, i)| (Seattle). (b) Singular values (Seattle). (c) Singular values (PlanetLab). (d) CDF of entries in F .

paper, we also use rank minimization to recover the network
latency matrix (after removing the Euclidean component).
However, we propose a robust Schatten-p norm minimization
algorithm which incorporates Frobenius norms on one extreme
for better efficiency and nuclear norms on the other extreme for
better approximation, and can thus flexibly trade complexity
off for accuracy, depending on application requirements and
available computational resources.

Measurement studies have been conducted for different
kinds of networks, such as WiFi networks [19], Cellular net-
works [20], and 4G LTE networks [21], reporting latencies and
other properties. The latency measurement on Seattle is cross-
network in nature, as Seattle involves many different types of
nodes from stable servers to personal devices including laptops
and smart phones.

III. Seattle VS. PlanetLab: MEASURING THE LATENCIES

In this section, we present characteristics of latencies
measured from Seattle [7] containing personal devices, in
comparison to those from PlanetLab. We make all the mea-
surements publicly available for reproducibility [10]. Seattle
is a new open peer-to-peer computing platform that provides
access to personal computers worldwide. In contrast to Plan-
etLab [22], which is a global research network comprised
of computers mostly located in stable university networks,
Seattle nodes include many personal devices, such as mobile
phones, laptops, and personal computers, donated by users and
institutions. Due to the diversity, mobility and instability of
these personal devices, Seattle is significantly different from
PlanetLab in terms of latency measurements.

We have collected the round trip times (RTTs) between
99 nodes in the Seattle network in a 3-hour period com-
mencing at 9 pm on a day in summer 2014. The dataset
has 6, 743, 088 latency measurements in total, consisting
of 688 latency matrices, each of which has a size of 99 × 99
and represents the pairwise RTTs between 99 nodes collected
in a 15.7-second timeframe. In this paper, we may refer to each
matrix as a “frame” since the collected data is 3D. Our data
collection on Seattle was limited to 99 nodes because as a new
platform that includes both personal computers and servers,
Seattle is yet to receive more donations of personal devices.
However, it will be clear in Sec. VII that the collected data
is rich enough for the purpose of studying latency prediction
algorithms.

As a benchmark dataset, we also collected the RTTs
between 490 PlanetLab nodes in a 9-day period in 2013 and
obtained 4, 321, 800 latency measurements in total, consisting
of 18 matrices (frames), each of which has a size of 490×490
and represents the pairwise RTTs collected in a 14.7-hour
timeframe. We will compare the Seattle data with PlanetLab
data in terms of RTT statistics, ranks of latency matrices, and
time-varying characteristics.

Round Trip Times: Fig. 1(a) shows that Seattle RTTs (with
a mean of 0.36 seconds) are greater than PlanetLab RTTs
(with a mean of 0.15 seconds), and are spread in a wider
range. While the maximum RTT observed in PlanetLab is
only 7.90 seconds, the maximum RTT in Seattle is 90.50
seconds, probably because some nodes are temporarily offline,
which is a common case for cellular devices not in the service
region.

Asymmetry and Triangle Inequality Violation: Traditional
Euclidean embedding methods for network latency predic-
tion [1], [2] assume symmetry and triangle inequalities for
pairwise latencies, which may not be true in reality, especially
when an increasing number of mobile devices is present
with unstable network connectivity. Fig. 2(a) shows the CDF
of Seattle latencies as well as the CDF of asymmetric gap
|RTT(i, j) − RTT(j, i)| in Seattle. We can see that the asym-
metric gaps |RTT(i, j) − RTT(j, i)| have a distribution very
close to that of actual latencies in Seattle, verifying that
Seattle RTTs are not symmetric. This is in sharp contrast to
PlanetLab, in which latencies can be assumed to be symmetric.
Furthermore, to test triangle inequality violation (TIV), we
randomly select 10, 000, 000 triples of nodes from Seattle data
and observe a TIV ratio of as high as 55.4%, while the TIV
ratio in PlanetLab data is only 17.5%. Due to asymmetric
RTTs and TIV, Euclidean embedding is insufficient to model
pairwise latencies in Seattle.

Rank of Latency Matrices: We perform singular value
decomposition (SVD) [23] on a typical latency matrix
frame in Seattle and a typical frame in PlanetLab as
well, and plot the singular values of both latency matrices
in Fig. 2(b) and Fig. 2(c), respectively. We can observe
that the singular values of both matrices decrease fast. The
15th singular value of the Seattle latency matrix is 4.9% of
its largest one, while the 7th singular value of the PlanetLab
latency matrix is 4.7% of its largest one. This confirms the
low-rank nature of Internet latencies reported in previous
measurements [24].
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Fig. 3. The time-varying characteristics of latencies between 3 pairs of nodes
in Seattle and PlanetLab.

Fig. 4. The relative varying percentage (RVP) of every measured latency
matrix relative to the first measured latency matrix in Seattle and PlanetLab.

Time-Varying Characteristics: Fig. 3 compares the RTTs
of 3 typical node pairs in the Seattle network with those in
PlanetLab. Since Seattle contains many user-donated personal
devices including mobile phones and laptops, its latencies may
vary greatly across time, whereas the latencies in PlanetLab
do not change by more than 0.1 second even across hours.

To get a better idea about the evolution of frames of data
over time, we denote M(t) the n×n latency matrix measured
at time t, where Mij(t) is the RTT between node i and node j.
Then, we define the Relative Varying Percentage (RVP) of
M(t) relative to the first matrix M(1) as

RVP(t, 1) =
1

n2 − n

∑

(i,j),i�=j

[Mij(t) − Mij(1)]/Mij(1).

We plot RVP(t, 1) for every frame t in Fig. 4 for both
Seattle and PlanetLab. We can observe a huge difference
between the two datasets. While the RVP of PlanetLab frames
over 9 days always stays below 0.09, the RVPs of Seattle
frames in merely 3 hours can be up to 5.8 × 105 with a
mean 1.5 × 105. This demonstrates the time-varying nature
of Seattle latencies, which makes it hard to predict the latency
between two Seattle nodes. Traditional network coordinate
embedding is not suitable to model the latencies in personal
device networks.

IV. STATIC LATENCY ESTIMATION VIA

DISTANCE-FEATURE DECOMPOSITION

We first present our solution to static network latency esti-
mation involving personal devices. Combining the strengths of
both Euclidean embedding and matrix completion, we model
each pairwise latency in Seattle as the product of a distance
component, representing the geographic distance that dictates
propagation delay, and a network feature component, indi-
cating the network connectivity between the pair of nodes.
We only assume the extracted network features are correlated
among nodes, while the distances satisfy Euclidean properties.
In this section, we will propose a distance-feature decompo-
sition procedure for static latency estimation.

A. Problem Definition and Our Model

Let R
n denote the n-dimensional Euclidean space. The

set of all m × n matrices is denoted by R
m×n. Assume a

network contains n nodes, and the latency matrix measured
between these nodes is M ∈ R

n×n, where Mij denotes the
RTT between nodes i and j. We use Ω to denote the set of
index pairs (i, j) where the measurements Mij are known,
and Θ to denote the set of unknown index pairs. For missing
entries (i, j) /∈ Ω, we denote their values as Mij = unknown.
We define the sample rate R as the percentage of known
entries in M . Given an incomplete latency matrix M , the
static network latency estimation problem in this paper is
to recover all pairwise latencies. We denote the estimated
complete latency matrix as M̂ ∈ R

n×n.
We model the RTT matrix M as the Hadamard product

(or entry-wise product) of a symmetric distance matrix
D ∈ R

n×n and an asymmetric network feature matrix
F ∈ R

n×n, i.e., M = D ◦ F , where Mij = DijFij , 1 ≤ i,
j ≤ n, Dij represents the distance between nodes i and j
in a Euclidean space, and Fij represents the “network con-
nectivity” from node i to node j; a smaller Fij indicates a
better connectivity between nodes i and j. We assume that the
network feature matrix F is a low-rank matrix contaminated
by noise. The rationale behind is as follows.

First, we assume the network feature matrix F has a low
rank, because correlation exists between network connec-
tivities on all incoming (or outgoing) links of each node,
and feature vectors can clearly interpret such correlations.
In particular, we call the vector f i

l ∈ R
r as an r-dimensional

left feature vector of node i, which represents the network
feature from node i to other nodes. Similarly, we call the
vector f j

r ∈ R
r the right feature vector of node j, which

represents the network feature from other nodes to node j.
Hence, the network connectivity from node i to node j can
be determined by the feature vectors, i.e., Fij = f i

l
�

f j
r , and

the whole network feature matrix F can be represented by

F = FlF
�
r , Fl ∈ R

n×r, Fr ∈ R
n×r, (1)

where the i-th row of Fl is f i
l and the j-th row of Fr is f j

r .
Second, the distance matrix D defined above is not guar-

anteed to have a low rank. Note that there is another type
of matrix, namely Euclidean Distance Matrix (EDM), which
is defined as a matrix D′ of squared distances D′

ij :=
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Algorithm 1 Distance-Feature Decomposition
1: Perform Euclidean Embedding on incomplete RTT

matrix M to get a complete matrix of distance esti-
mates D̂

2: Fij :=

{
Mij

D̂ij
∀(i, j) ∈ Ω

unknown ∀(i, j) /∈ Ω
3: Perform matrix completion on F to get the complete matrix

of network feature estimates F̂
4: Output M̂ij := D̂ij F̂ij , 1 ≤ i, j ≤ n

‖xi − xj‖2. The rank of D′ is known to be no more than
2 + d, where d is the dimension of the Euclidean Space [25].
However, no conclusion on rank can be made for our D, where
Dij = ‖xi − xj‖. Therefore, we do not assume any rank
properties for D.

In a nutshell, the distance matrix D models the geographical
distances between nodes. D is symmetric, satisfies the triangle
inequality, yet does not necessarily have a low-rank. On the
other hand, the network feature matrix F models factors
like network congestions and node status. F is asymmetric
and may violate the triangle inequality, but is low-rank. Our
model overcomes the shortness of both Euclidean embedding
and low-rank matrix completion, since symmetry and triangle
inequalities only need to hold for the distance matrix D but
not F , and the low-rank property is only assumed for network
connectivity F but not D.

B. Distance-Feature Decomposition

We propose a distance-feature decomposition procedure
in Algorithm 1, where we employ a simple network feature
extraction process, as described in the first 2 steps to remove
the Euclidean distance component D. Specifically, we estimate
the distance matrix D̂ by performing Euclidean embedding
on raw data M , e.g., via Vivaldi [1], which can find the
coordinate xi of each node i in a Euclidean space, given
partially measured pairwise RTTs. The distance between nodes
i and j can then be estimated as their distance D̂ij = ‖xi−xj‖
in the Euclidean space. We then divide M by D̂ (element-
wise), leading to an incomplete network feature matrix F .
A rank minimization algorithm is then performed on F
(which could be noisy) to estimate a complete network feature
matrix F̂ without having to know its rank a priori. Finally,
the predicted latency between nodes i and j is given by
M̂ij := D̂ijF̂ij , 1 ≤ i, j ≤ n.

In Fig. 2(b), Fig. 2(c), and Fig. (d), we show the rank
properties of M , D̂, and F for a typical Seattle frame and
a typical PlanetLab frame. Here we assume that data in both
frames are all known for the study of rank properties only. For
Seattle, we observe that the extracted network feature matrix F
has the steepest descent of singular values and is likely to
have a lower rank than the original RTT matrix M . It is
worth noting that although D̂ seems to have faster decreasing
singular values, it is already removed by Euclidean embedding
and we do not take further actions on D̂.

In contrast, for PlanetLab, the above decomposition phe-
nomenon is not observed. As shown in Fig. 2(c), the singular

values of D̂ almost overlap with those of the raw latency M ,
while the network feature matrix F has much smaller singular
values relative to M , even though most entries in F are a bit
larger than those for the Seattle case, as shown in Fig. 2(d).
This implies that for PlanetLab, the distance matrix D
produced by Euclidean embedding can already approximate
raw latencies M accurately enough. Therefore, there is no need
to extract the network feature matrix F (and further perform
matrix completion on F ) in PlanetLab. These observations will
be further re-confirmed by our trace-driven evaluation results
in Sec. VII.

V. ROBUST MATRIX COMPLETION VIA

SCHATTEN-p NORM MINIMIZATION

The core of our latency estimation procedure (Step 3 in
Algorithm 1) is to complete the extracted feature matrix F ,
which is possibly noisy. Formally, given a noisy input
matrix X ∈ R

m×n with missing entries, the problem of
low-rank matrix completion is to find a complete matrix X̂
by solving

minimize
X̂∈Rm×n

rank(X̂)

subject to |X̂ij − Xij | ≤ τ, (i, j) ∈ Ω, (2)

where τ is a parameter to control the error tolerance on known
entries of the input matrix X [26] or the maximum noise that
is present in the observation of each known pair (i, j) ∈ Ω.
It is well-known that problem (2) is an NP-hard problem. In
contrast to matrix factorization [3], the advantage of the matrix
completion formulation above is that we do need to assume
the rank of the network feature matrix is known a priori.

One popular approach to solve (2) is to use the sum of
singular values of X̂ , i.e., the nuclear norm, to approxi-
mate its rank. The nuclear norm is proved to be the con-
vex envelope of the rank [27] and can be minimized by
a number of algorithms, including the well-known singular
value thresholding (SVT) [9]. Other smooth approximations
include Reweighted Nuclear Norm Minimization [28], and
Iterative Reweighted Least Squares algorithm IRLS-p (with
0 ≤ p ≤ 1) [8], which attempts to minimize a weighted
Frobenius norm of X̂ .

A. A Family of Iterative Weighted Algorithms

Note that all the state-of-the-art rank minimization algo-
rithms mentioned above either minimize the nuclear norm,
which is a better approximation to rank, or the Frobenius norm,
which is efficient to solve. In this paper, we propose a family of
robust algorithms, called Iterative weighted Schatten-p norm
minimization (IS-p), with 1 ≤ p ≤ 2, which is a generalization
of a number of previous “iterative reweighted” algorithms to a
tunable framework; the IS-p algorithm minimizes a reweighted
nuclear norm if p = 1 and minimizes a reweighted Frobenius
norm if p = 2. We will show that with IS-p is more robust to
any practical parameter settings and trades complexity off for
accuracy depending on the application requirements.

The IS-p algorithm is described in Algorithm 2. Note that
when p = 1, problem (3) is a nuclear-norm minimization
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Algorithm 2 The IS-p Algorithm (1 ≤ p ≤ 2)

1: Input: An incomplete matrix X ∈ R
m×n (m ≤ n) with

Xij known only for (i, j) ∈ Ω; the error tolerance τ on
known entries

2: Output: X̂ as an approximate solution to (2).
3: Initially, L0 := I , δ0 is an arbitrary positive number
4: for k = 1 to maxIter do
5: Solve the following convex optimization problem to

obtain the optimal solution X̂k:

minimize
X̂

|Lk−1X̂‖p
p

subject to |X̂ij − Xij | ≤ τ, (i, j) ∈ Ω (3)

6: [Uk, Σk, V k] := SVD(X̂k), where Σk is an m×n diag-
onal matrix with non-negative real numbers (singular
values of X̂k) σk

1 , . . . , σk
m on the diagonal

7: Form a weight matrix W k ∈ R
m×m, where

W k
ij :=

{(
(σk

i )p + δk−1
)− 1

p , i = j

0, i �= j

8: Choose δk such that 0 < δk ≤ δk−1.
9: Lk := UkW kUk�

10: end for
11: X̂ := X̂maxIter

problem, and when p = 2, problem (3) becomes Frobenius-
norm minimization. In fact, for 1 ≤ p ≤ 2, problem (3) is a
convex problem in general. To see this, for any X ∈ R

m×n

(m ≤ n), denote σi(X) the ith singular value of X . Then,
we have ‖X‖p

p =
∑m

i=1 (σi(X))p = tr
(
(X�X)

p
2
)
, which is

a convex function for p ≥ 1, since tr(X�X)
p
2 is convex and

non-decreasing for p ≥ 1 [28]. A large number of efficient
solutions have been proposed to solve the nuclear-norm and
Frobenius-norm versions of (3) [9], [28], while for 1 ≤ p ≤ 2
problem (3) is convex in general. Therefore, we resort to
existing methods to solve the convex problem (3), which will
not be the focus of this paper. Furthermore, exact singular
value decomposition for X̂k in Step 6 can be performed within
polynomial time with a complexity of O(m2n).

Let us now provide some mathematical intuition to explain
why Algorithm 2 can approximate the rank minimiza-
tion. Initially, we replace the objective function rank(X̂)
with ‖X̂‖p. Subsequently, in each iteration k, we are minimiz-
ing ‖Lk−1X̂‖p

p. Recall that in Step 6 of iteration k, the optimal
solution X̂k can be factorized as X̂k = UkΣkV k via singular
value decomposition, where Uk ∈ R

m×m and V k ∈ R
n×n are

unitary square matrices, i.e., Uk�Uk = I , V k�V k = I . Thus,
we have ‖Lk−1X̂k‖p

p = ‖Uk−1W k−1Uk−1�UkΣkV k‖p
p.

If Uk−1 ≈ Uk after a number of iterations, we will have

‖Lk−1X̂k‖p
p ≈ ‖Uk−1W k−1Uk�UkΣkV k‖p

p

= ‖Uk−1(W k−1Σk)V k‖p
p

=
m∑

i=1

(
σi

(
W k−1Σk

))p

=
m∑

i=1

(
σk

i

((σk−1
i )p + δk−1)1/p

)p

=
m∑

i=1

(σk
i )p

(σk−1
i )p + δk−1

, (4)

which eventually approaches rank(X̂k). To see this, note that
for two sufficiently small positive constants δk−1 and δk, upon
convergence, i.e., when σk

i = σk−1
i , we have

(σk
i )p

(σk−1
i )p + δk−1

≈ (σk
i )p

(σk
i )p + δk

≈
{

0 if σk
i = 0,

1 if σk
i > 0,

Therefore, ‖Lk−1X̂k‖p
p represents the number of nonzero

singular values σk
i in X̂k, which is exactly the rank of X̂k.

B. Convergence Analysis

The above informal analysis only provides an intuitive
explanation as to why the algorithm works, based on the
hope that the algorithm will converge. The following theorem
can ensure the convergence of the produced rank(X̂k) and
therefore guarantee the convergence of Algorithm 2.

Theorem 1: Suppose X̂k is the output of Algorithm 2 in
iteration k. For any matrix X ∈ R

m×n and any p ∈ [1, 2],
rank(X̂k) converges. In particular, for a sufficiently large k,
we have σi(X̂k) − σi(X̂k−1) → 0, for i = 1, . . . , m.

Proof: We first present some useful lemmas.
Lemma 1: For any A ∈ R

m×n and B ∈ R
n×r, the

following holds for all 1 ≤ p ≤ 2:

n∑

i=1

σp
n−i+1(A)σp

i (B) ≤ ‖AB‖p
p ≤

n∑

i=1

σp
i (A)σp

i (B), (5)

where σi(A) denotes the ith singular value of A.
Please refer to the appendix for a proof of this lemma, which

is available as supplementary material.
Corollary 2: Given an m × m diagonal matrix A with

nonnegative and non-decreasing (non-increasing) diagonal
entries a11, . . . , amm, and another m× n diagonal matrix B
with nonnegative and non-increasing (non-decreasing) diag-
onal entries b11, . . . , bmm, we have ‖AUB‖p ≥ ‖AB‖p for
any m × m square unitary matrix U (i.e., UU = I), where
1 ≤ p ≤ 2.

Proof of Corollary 2: Without loss of generality, we assume
a11 ≥ a22 ≥ . . . ≥ amm ≥ 0 and 0 ≤ b11 ≤ b22 ≤ . . .
≤ bmm. By Lemma 1, we have

‖AUB‖p
p ≥

m∑

i=1

σp
i (A)σp

n−i+1(UBI) =
m∑

i=1

σp
i (A)σp

n−i+1(B)

=
m∑

i=1

ap
iib

p
ii =

m∑

i=1

σp
i (AB) = ‖AB‖p

p,

proving the corollary. �
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We now prove Theorem 1. According to Corollary 2 and
the unitarily invariant property of Schatten-p norms, we have

‖Lk−1X̂k‖p = ‖Uk−1W k−1Uk−1�UkΣkV k�‖p (6)

= ‖W k−1Uk−1�UkΣk‖p (7)

≥ ‖W k−1Σk‖p (8)

=

(
n∑

i=1

(
σk

i

)p
(
σk−1

i

)p
+ δk−1

) 1
p

, (9)

where (8) is due to Lemma 2, since W k−1 and Σk are diagonal
matrices with nonnegative non-decreasing and non-increasing
entries, respectively, and Uk−1�Uk is still unitary.

Since X̂k is the optimal solution to (3), we have

‖Lk−1X̂k‖p ≤ ‖Lk−1X̂k−1‖p (10)

= ‖Uk−1W k−1Σk−1V k−1�‖p (11)

= ‖W k−1Σk−1‖p (12)

=

(
n∑

i=1

(
σk−1

i

)p
(
σk−1

i

)p
+ δk−1

) 1
p

(13)

Therefore, since δk ≤ δk−1, we have

n∑

i=1

(
σk

i

)p
(
σk−1

i

)p
+ δk−1

≤
n∑

i=1

(
σk−1

i

)p
(
σk−1

i

)p
+ δk−1

,

n∑

i=1

(
σk

i

)p + δk

(
σk−1

i

)p
+ δk−1

≤
n∑

i=1

(
σk−1

i

)p
+ δk−1

(
σk−1

i

)p
+ δk−1

= n.

Let xk
i := (σk

i )p and xk = (xk
1 , xk

2 , ..., xk
n). Define a

function L : R
n → R+, L(x) =

∏n
i=1(xi + δk), with δk > 0.

We will show that the sequence L(xk) is monotonically non-
increasing using a similar method in [29], and prove the
convergence of σk

i for 1 ≤ i ≤ n.
Using the inequality between the arithmetic and geometric

means for nonnegative terms, we have

n∏

i=1

xk
i + δk

xk−1
i + δk−1

≤ 1,

which implies that L(xk) ≤ L(xk−1). Also, since xk
i ≥ 0,

L is bounded below by δn, the sequence L(xk) converges.
It implies that

n∏

i=1

xk
i + δk

xk−1
i + δk−1

=
L(xk)

L(xk−1)
→ 1.

Define yk to be yk
i = xk

i +δk

xk−1
i +δk−1 , and yk

1 = 1 + ε. We have

n∏

i=1

yk
i = (1 + ε)

n∏

i=2

yk
i ≤ (1 + ε)

(
1 − ε

n − 1

)n−1

= f(ε)

by combining
∑n

i=1 yk
i ≤ n and the inequality between the

arithmetic and geometric means. Function f(ε) is continuous
and satisfies f(0) = 1, f ′(0) = 0, and f ′′(ε) < 0, for |ε| < 1.
Hence, f(ε) < 1 for ε �= 0, |ε| < 1.

Therefore, since
∏n

i=1 yk
i → 1, we have f(ε) → 1, which

in turn implies ε → 0. Hence yk
1 → 1, and the same holds for

all yk
i . Thus, we have

yk
i =

(σk
i )p + δk

(σk−1
i )p + δk−1

→ 1.

By monotone convergence theorem, there exists a point
δ∗ ≥ 0 such that δk → δ∗, and thus δk−1 − δk ≤ δk−1 −
δ∗ → 0, implying δk−1 − δk → 0. Since σk

i is finite, we
conclude that σk

i − σk−1
i → 0, for all i = 1, . . . , n, which

implies rank(X̂k) − rank(X̂k−1) → 0. �

C. Relationships to Prior Algorithms

We now point out that the proposed IS-p algorithm is a gen-
eralization of a number of previous reweighted approximate
algorithms based on either nuclear norm or Frobenius norm
alone to a tunable class of algorithms trading complexity off
for performance.

Singular value thresholding (SVT) is an algorithm to solve
the convex nuclear norm minimization:

minimize
X̂∈Rm×n

‖X̂‖∗
subject to |X̂ij − Xij | ≤ τ, (i, j) ∈ Ω, (14)

which approximates (2). It is shown [30] that for most matrices
of rank r, (14) yields the same solution as (2), provided that
the number of known entries m ≥ Cn6/5r log n for some
positive constant C. However, when m < Cn6/5r log n, the
nuclear-norm-minimizing solution from SVT usually cannot
approximate (2) well. In fact, SVT can be viewed as only
performing the first iteration of the proposed Algorithm 2 with
p = 1. In contrast, Algorithm 2 adopts multiple iterations of
reweighted minimizations to refine the results and can further
approximate the rank minimization problem over iterations,
even if m < Cn6/5r log n.

A number of iterative reweighted approximations to (2)
have been proposed. They could be different in performance,
mainly due to the different norms (either Frobenius norm or
nuclear norm) adopted as well as the way to form the weight
matrix Lk. Iterative Reweighted Least Squares (IRLS-p and
sIRLS-p) [28] is also a reweighted algorithm to approximate
the affine rank minimization problem (i.e., problem (2) with
τ = 0 in the constraint). It minimizes a weighted Frobenius
norm ‖Lk−1X‖F in each iteration k to produce an Xk, where

Lk−1 :=
√

(Xk−1�Xk−1 + δI)p/2−1 with 0 ≤ p ≤ 1.
By simple maths derivations, we find the weight Lk−1 in
IRLS-p is different from that in Algorithm 2, therefore yielding
different approximation results. Furthermore, IRLS-p can only
minimize a Frobenius norm in each iteration, whereas the
nuclear norm is known to be the best convex approxima-
tion of the rank function [27]. In contrast, the proposed
Algorithm 2 represents a family of algorithms including
nuclear norm minimization (when p = 1) on one end to
achieve better approximation and Frobenius norm minimiza-
tion (when p = 2) on the other end for faster computation.
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Fig. 5. Performance of IS-p (p = 1) and other algorithms on synthetic 100 × 100 matrices with rank r = 20, under sample rates R = 0.3 and R = 0.7.
(a) R = 0.3, ε = 0. (b) R = 0.3, ε = 0.1. (c) R = 0.7, ε = 0. (d) R = 0.7, ε = 0.1.

D. Performance on Synthesized Low-Rank Data

We evaluate our algorithm based on synthesized true
low-rank matrices contaminated by random noises, in com-
parison with several state-of-the-art approaches to matrix
completion:

• Singular Value Thresholding (SVT) [9]: an algorithm
for nuclear norm minimization as an approximation to
rank minimization;

• Iterative Reweighted Least Squares (sIRLS-p) [28]:
an iterative algorithm to approximate rank minimization
with a reweighted Frobenius-norm minimization in each
iteration. According to [28], the performance of sIRLS-1
is proved to guarantee the recovery performance, thus we
choose sIRLS-1 for comparison;

• DMFSGD Matrix Factorization [3]: a distributed
network latency prediction algorithm that attempts to
approximate a given matrix M using the product of two
smaller matrices M̂ = UV �, where U ∈ R

n×r and
V ∈ R

n×r, such that a loss function based on M − M̂
is minimized, where r is the assumed rank of M̂ .

In our experiments, we randomly generate 100×100 matri-
ces with rank r = 20, contaminated by noise. The generated
matrix can be represented as X = UV �+εN , where U and V
are randomly generated n × r matrices (n = 100, r = 20)
with entries uniformly distributed between 0 and 1. N is an
n × n standard Gaussian noise matrix. We run simulations
under the sample rates R = 0.3 and R = 0.7 and under both
the noiseless case ε = 0 and the noisy case ε = 0.1 to test the
algorithm robustness.

Fig. 5(a) and Fig. 5(c) compare the performance of different
algorithms in the noiseless case. As we can see, our algorithm
is the best at low sample rate (R = 0.3). When the sample
rate is high (R = 0.7), both our algorithm and SVT are the
best. For the noisy case, Fig. 5(b) and Fig. 5(d) show that
our algorithm outperforms all other algorithms at both the
low sample rate (R = 0.3) and the high sample rate (R =
0.7), thus proving that our algorithm is the most robust to
noise.

Under the same setting, we now investigate the tradeoff
between setting p = 1 (the Nuclear norm version) and
p = 2 (the Frobenius norm version) in IS-p in Fig. 6.
In general, the nuclear norm version (IS-1) usually converges
in a few iterations (usually one iteration) and more iterations
will give little improvement. On the other hand, the Frobenius

Fig. 6. A comparison between IS-1 (the nuclear-norm version) and IS-2 (the
Frobenius-norm version) in terms of recovery errors and running time.

norm version (IS-2) requires more iterations to converge, and
the relative recovery error decreases significantly as more
iterations are adopted.

Specifically, under R = 0.3, IS-1 already achieves a low
error within about 10 seconds. In this case, although IS-2 leads
to a higher error, yet it enables a tunable tradeoff between
accuracy and running time. When R = 0.7, IS-2 is better
considering both the running time and accuracy. Therefore,
we make the following conclusions:

First, IS-1 (the nuclear norm version) achieves better accu-
racy in general, yet at the cost of a higher complexity.
IS-1 could be slower when more training data is avail-
able. The reason is that when problem (3) for p = 1 in
Algorithm 2 is solved by a semidefinite program (SDP) (with
performance guarantees [27]), which could be slow when data
size increases. Note that SVT or other first-order algorithms
cannot be applied to (3) due to the weight matrix L in the
objective. Therefore, IS-1 should only be used upon abundant
computational power or high requirement on accuracy.

Second, IS-2 has a low per-iteration cost, i.e., the error
decreases gradually when more iterations are used. Therefore,
it allows the system operator to flexibly tune the achieved
accuracy by controlling the running time invested. Further-
more, although IS-2 does not always lead to the best perfor-
mance, the achieved relative error is usually sufficient for the
purpose completing the network feature matrix F . Due to this
flexible nature of IS-2, we set p = 2 for our experiments on
network latency estimation in Sec. VII, so that we can control
the rank of the recovered network feature matrix F̂ that we
want to achieve, under a given budget of running time.

In our experiments, we actually set δk = δk−1/η, where
η > 1 is a constant. We find that good performance is usually
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achieved by a large initial value of δ and an appropriate η.
Specifically, we set the initial δ to 100,000 and η = 2.

VI. DYNAMIC LATENCY ESTIMATION VIA

TENSOR APPROXIMATION

Most existing network latency prediction tech-
niques [1], [3], [15] attempt to predict static median/mean
network latencies between stable nodes such as PlanetLab
nodes. However, for personal devices with mobility and
time-varying network conditions, as has been illustrated
in Fig. 3 and Fig. 4, static network latency estimation based
on only the current frame is not effective enough to capture
the changing latencies.

The above fact motivates us to study the dynamic latency
prediction problem, that is to predict the missing network
latencies in the current frame based on both the current and
previous frames, i.e., based on a sliding window of latency
frames sampled from random node pairs at different times
up to the present. Note that although latencies in Seattle
change frequently, they may linger in a state for a while before
hopping to a new state, as shown in Fig. 3. Therefore, we can
improve the prediction accuracy for the current frame, if we
utilize the autocorrelation between frames at different times
in addition to the inter-node correlation in the network feature
matrix.

A. Feature Extraction From a Tensor

We use a tensor M = (Mijt) ∈ R
n×n×T to represent

a 3-dimensional array that consists of T RTT matrices with
missing values, each called a “frame” of size n×n, measured
at T different time periods.

Let Ω denote the set of indices (i, j, t) where the mea-
surements Mijt are known and Θ denote the set of unknown
indices. The problem is to recover missing values in M, espe-
cially the missing entries in the current timeframe with t = 1.
Similar to the static case, we model M as a Hadamard product
(entry-wise product) of a distance tensor D ∈ R

n×n×T and
a network feature tensor F ∈ R

n×n×T , i.e., M = D ◦ F ,
where Mijt = DijtFijt, 1 ≤ i, j ≤ n, t = 1, . . . , T , with
Dijt representing the distance between nodes i and j in a
Euclidean space at time t, and Fijt representing the “network
connectivity” from node i to node j at time t. Similarly, we
assume the network feature tensor F is a low-rank tensor
contaminated by noise.

To extract the network feature tensor F from 3D sam-
pled data M, we can apply Euclidean embedding to each
frame of M, using Vivaldi, to obtain D̂ijt as described
in Algorithm 3. Note that, in practice, it is sufficient to perform
Euclidean embedding offline beforehand for the mean of
several frames, assuming the distance component D̂ijt ≡ D̂ij

does not vary across t, such that the time-varying component
is captured by the network feature tensor F . The remaining
task is to complete F to obtain F̂ . Then, the missing latencies
can be estimated as M̂ijt := D̂ijtF̂ijt.

B. Approximate Tensor Completion

In order to complete all missing values in F , we generalize
the matrix completion problem to tensor completion and

Algorithm 3 Tensor Completion With Feature Extraction
1: Perform Euclidean Embedding on each frame of M to get

a complete tensor of distance estimates D̂
2: Fijt :=

{
Mijt

D̂ijt
∀(i, j, t) ∈ Ω

unknown ∀(i, j, t) /∈ Ω
3: Perform approximate tensor completion on F to get the

complete matrix of network feature estimates F̂
4: Output M̂ijt := D̂ijtF̂ijt, 1 ≤ i, j ≤ n, 1 ≤ t ≤ T

Fig. 7. Illustration of tensor unfolding for the 3D case.

extend our IS-p algorithm to the tensor case. In this paper,
we only focus on tensors in R

n×n×T , a size relevant to our
specific latency estimation problem, although our idea can be
applied to general tensors. Given a tensor X ∈ R

n×n×T with
missing entries, tensor completion aims to find a complete
low-rank tensor X̂ by solving

minimize
X̂∈Rn×n×T

rank(X̂ )

subject to |X̂ijt −Xijt| ≤ τ, (i, j, t) ∈ Ω, (15)

where τ is a parameter to control the error tolerance on known
entries. However, unlike the case of matrices, the problem of
finding a low rank approximation to a tensor is ill-posed. More
specifically, it has been shown that the space of rank-r tensors
is non-compact [31] and that the nonexistence of low-rank
approximations occurs for many different ranks and orders.
In fact, even computing the rank of a general tensor (with
a dimension≥ 3 ) is an NP hard problem [32] and there is
no known explicit expression for the convex envelope of the
tensor rank.

A natural alternative is to minimize a weighted sum of the
ranks of some 2D matrices “unfolded” from the 3D tensor,
hence reducing tensor completion to matrix completion. The
unfold operation is illustrated in Fig. 7 for a 3D tensor along
each of the three dimensions. Here I1, I2 and I3 are index sets
for each dimension. These unfolded matrices can be computed
as follows:

• The column vectors of X are column vectors
of X(1) ∈ R

n×nT .
• The row vectors of X are column vectors

of X(2) ∈ R
n×nT .

• The (depth) vectors on the third dimension of X are
column vectors of X(3) ∈ R

T×n2
.
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Fig. 8. The singular values of three unfolded matrices from Seattle data.
The sizes of them are 99×68112, 99×68112 and 688×9801, respectively.
A thresholding of 0.9 (the 95-percentile of latencies) is applied to exclude the
impact of outliers.

Fig. 8 shows the singular values of all three unfolded
matrices generated from the tensor of 688 frames in
Seattle data. In particular, for matrix X(3), each row is a
vector consisting of all the 99 × 99 = 9801 pairwise laten-
cies. Even though X(3) has a large size of 688 × 9801, its
singular values drop extremely fast: the 5th singular value of
X(3) is only 6% of its largest singular value. This implies
that latencies measured at consecutive time frames for a
same pair of nodes are highly autocorrelated along time and
that X(3) can be deemed as a low-rank matrix contaminated by
noise.

With unfolding operations defined above, the problem of
“low-rank” tensor approximation can be formulated as min-
imizing the weighted sum of ranks for all three unfolded
matrices [33]:

minimize
X̂∈Rn×n×T

3∑

l=1

αl · rank(X̂(l))

subject to |X̂ijt −Xijt| ≤ τ, (i, j, t) ∈ Ω, (16)

where αl is a convex combination coefficient, with αl ≥ 0
and

∑3
l=1 αl = 1.

Apparently, the above non-convex problem of minimizing
the weighted sum of ranks is still hard to solve. We propose
a generalization of the proposed IS-p algorithm to the ten-
sor case. Our “low-rank” tensor approximation algorithm is
described in Algorithm 4. The algorithm first solves a convex
optimization problem by minimizing the sum of weighted
Schatten-p norms of all unfolded matrices within the given
noise tolerance. Here the weight matrices L(l) are assigned
for each unfolded matrix of tensor X . Then the algorithm will
update weight matrices L(l) one by one. This procedure is
similar to what we did in 2D matrix completion.

It is not hard to check that problem (17) is a convex problem
for all 1 ≤ p ≤ 2, since for a fixed weight matrix L, ||LX ||pp is
a convex function of X . In (17), we can see that the objective
function is a convex combination of three convex functions.
Note that the convergence of Algorithm 4 cannot be extended
directly from the matrix case, but we observe in simulation
that our algorithm has robust convergence performance.

VII. PERFORMANCE EVALUATION

We evaluate our proposed network latency estimation
approaches on both single frames of 2D RTT matrices and

Algorithm 4 IS-p Algorithm for Tensor Completion

1: Initialize L0
(l) := I, p, δ0

(l), τ(l), η(l), l = 1, 2, 3
2: for k = 1 to maxIter do
3: Solve the following convex optimization problem to

obtain the optimal solution X̂ k:

minimize
X̂

3∑

l=1

αl‖Lk−1
(l) X̂(l)‖p

p

subject to |X̂ijt −Xijt| ≤ τ, (i, j, t) ∈ Ω
(17)

4: for l = 1 to 3 do
5: [Uk

(l), Σ
k
(l), V

k
(l)] := SV D

(
X̂k

(l)

)
, where Σk

(l) is a

diagonal matrix with diagonal elements of {σk
(l),i}.

6: W k
(l),ij :=

⎧
⎨

⎩

((
σk

(l),i

)p

+ δk−1
(l)

)− 1
p

, i = j

0, i �= j

7: Lk
(l) := Uk

(l)W
k
(l)U

k
(l)

�

8: Choose δk
(l) such that 0 < δk

(l) ≤ δk−1
(l) .

9: end for
10: end for
11: X̂ := X̂maxIter

3D multi-frame RTT measurements, in comparison with a
number of state-of-the-art latency estimation algorithms. For
network latency prediction based on 2D data, we evaluate our
algorithm on the Seattle dataset and PlanetLab dataset; for
dynamic network latency prediction based on 3D data, our
algorithm is evaluated based on the Seattle dataset. We have
made both datasets publicly available [10] for reproducibility.

A. Single-Frame Matrix Completion

We define the relative estimation error (RE) on missing
entries as |M̂ij − Mij |/Mij , for (i, j) ∈ Ω, which will be used
to evaluate prediction accuracy. We compare our algorithm
with the following approaches:

• Vivaldi with dimension d = 3, d = 7, and d = 3 plus a
height parameter;

• DMFSGD Matrix Factorization as mentioned in
Sec. VII, is a matrix factorization approach for RTT
prediction under an assumed rank, and

• PD with feature extraction as our earlier work [18],
which uses Penalty Decomposition for matrix completion
with feature extraction as shown in Alg. 1.

For our method, the Euclidean embedding part in feature
extraction is done using Vivaldi with a low dimension of d = 3
without the height.

We randomly choose 50 frames from the 688 frames in
the Seattle data. For PlanetLab data, as differences among
the 18 frames are small, we randomly choose one frame to
test the methods. Recall that the sample rate R is defined
as the percentage of known entries. Each chosen frame is
independently sampled at a low rate R = 0.3 (70% latencies
are missing) and at a high rate R = 0.7, respectively.

For DMFSGD, we set the rank of the estimation matrix M̂
to r = 20 for Seattle data and r = 10 for PlanetLab
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Fig. 9. The CDFs of relative estimation errors on missing values for the Seattle dataset, under sample rates R = 0.3 and R = 0.7, respectively.
(a) Seattle (Sample rate R = 0.3.). (b) Seattle (Sample rate R = 0.7).

Fig. 10. The CDFs of relative estimation errors on missing values for the PlanetLab dataset, under sample rates R = 0.3 and R = 0.7, respectively.
(a) PlanetLab (Sample rate R = 0.3). (b) PlanetLab (Sample rate R = 0.7).

data, respectively, since the 20th (or 10th) singular value of
M is less than 5% of the largest singular value in Seattle
(or PlanetLab). In fact, r = 10 is adopted by the original
DMFSGD work [3] based on PlanetLab data. We have tried
other ranks between 10-30 and observed similar performance.
We plot the relative estimation errors on missing latencies
in Fig. 9 for the Seattle data and Fig. 10 for the PlanetLab
data. They are both under 5 methods.

For the Seattle results in Fig. 9(a) and Fig. 9(b), we can
see that the IS-2 algorithm with feature extraction outper-
form all other methods by a substantial margin. We first
check the Vivaldi algorithms. Even if Vivaldi Euclidean
embedding is performed in a 7D space, it only improves
over 3D space slightly, due to the fundamental limitation
of Euclidean assumption. Furthermore, the 3D Vivaldi with
a height parameter, which models the “last-mile latency” to the
Internet core [1], is even worse than the 3D Vivaldi without
heights in Seattle. This implies that latencies between personal
devices are better modeled by their pairwise core distances
multiplied by the network conditions, rather than by pairwise
core distances plus a “last-mile latency”.

The DMFSGD algorithm is also inferior to our algorithm
both because it solely relies on the low-rank assumption, which
may not be enough to model the Seattle latency matrices
accurately, and because the proposed IS-p algorithm has better
performance than DMFSGD in terms matrix completion.

Fig. 9 also shows that the proposed IS-2 with feature
extraction is even better than our work [18] that adopts the
Penalty Decomposition (PD) heuristic for matrix completion
after feature extraction, the latter showing the second best
performance among all methods on Seattle data. This justifies
our adoption of IS-2 as a high-performance algorithm for the
matrix completion part, especially for highly unpredictable
Seattle latencies.

In contrast, for the PlanetLab results shown in Fig. 10(a)
and Fig. 10(b), our algorithm does not have a clear benefit
over other state-of-the-art algorithms. As shown in our mea-
surement in Sec. III, the latencies in PlanetLab are symmetric
and only a small portion of them violate the triangle inequality.
Thus, network coordinate systems such as Vivaldi already have
excellent performance. Furthermore, in Fig. 2(c), we can also
see that the RTT matrix M and the distance matrix D̂ have
similar singular values. Hence, there is no need to extract
the network feature matrix F for PlanetLab. In this case,
performing a distance-feature decomposition could introduce
additional errors and is not necessary. These observations
again show the unique advantage of our approach to personal
device networks, although it could be an overkill for stable
PlanetLab nodes.

B. Multi-Frame Tensor Approximation

We test our multi-frame latency tensor completion approach
on 50 groups of consecutive frames in Seattle. Each group
contains T = 3 consecutive frames of incomplete RTT
measurements, forming an incomplete tensor, and such triple-
frame groups are randomly selected from the Seattle dataset.
The objective is to recover all the missing values in each
selected tensor.

Recall that tensor completion is applied on the network
feature tensor F , whose unfolding matrices are F(l) for
l = 1, 2, 3. Since our tensor has a size of R

n×n×T , the first
two unfolded matrices F(1) and F(2) have the same size
n× nT . Since T = 3 in our experiment, the size of the other
unfolded matrix F(3) is 3 × n2. As the convex combination
coefficient α1, α2, α3 assigned to the three unfolded matrices
may affect the performance of data recovery, in our evaluation,
we consider the following versions of Algorithm 4:
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Fig. 11. The CDFs of relative estimation errors on the missing values in the current frame with sample rates R = 0.3 and R = 0.7 for the Seattle dataset.
Feature extraction has been applied in all experiments. (a) Sample rate R = 0.3. (b) Sample rate R = 0.3. (c) Sample rate R = 0.3. (d) Sample rate R = 0.7.
(e) Sample rate R = 0.7. (f) Sample rate R = 0.7.

• Algorithm 4 with single unfolding: only one unfolded
matrix is assigned a positive weight 1 while the other two
ones are assigned weight 0.

• Algorithm 4 with double unfolding: two of the unfolded
matrices are assigned with equal weight 0.5;

• Algorithm 4 with differentiation: Divide the index set
of all missing entries Θ into two subsets:

ΘA = {(i, j)|Mijt is known for at least one
t ∈ {1, . . . , T − 1}},

ΘB = {(i, j)|Mijt is missing for all
t ∈ {1, . . . , T − 1}}.

To recover the missing entries in ΘA, apply Algorithm 4
with weights α1 = α2 = 0, α3 = 1. To recover the
missing entries in ΘB , apply Algorithm 4 with weights
α1 = 1, α2 = α3 = 0.

We compare the above versions of Algorithm 4 with
static prediction methods based on single frames, including
Algorithm 2, DMFSGD and Vivaldi (7D). All versions
of Algorithm 4 and Algorithm 2 are applied with feature
extraction.

First, in Fig. 11(a) and Fig. 11(d), we compare Algorithm 4
with all the static prediction algorithms. For both low and high
sample rates R = 0.3 and R = 0.7, Algorithm 4 leveraging
tensor properties significantly outperforms the static latency
prediction methods. It verifies the significant benefit of utiliz-
ing multi-frames, and reveals the strong correlation between
different latency frames over time. By exploiting the low-rank
structure of all three unfolded matrices, Algorithm 4 takes full
advantage of the implicit information in the tensor data.

Second, we compare the performance of all different ver-
sions of Algorithm 4 in Fig. 11(b), Fig. 11(e), Fig. 11(c)
and Fig. 11(f), under different weight assignment schemes for
the unfolded matrices F(l) for l = 1, 2, 3.

Fig. 11(b) and Fig. 11(e) compare various single unfold-
ing schemes to Algorithm 4 with differentiation. Among all
single unfolding schemes, Algorithm 4 performs similarly for
l = 1 and 2, which outperforms l = 3. The reason is that if an
entry is missing in all 3 frames, we cannot hope to recover it
only based on F(3). The discrepancy between using the single
unfolding F(1) (or F(2)) and using F(3) is shrinking when the
sample rate is high (R = 0.7), because the chance that a
node pair is missing in all 3 frames is small. This motivates
us that we can benefit more from historical values of Mij

when they are available rather than using network condition
correlations between different nodes for estimation, and weight
differentiation in Algorithm 4 would improve the recovery
performance of our algorithm.

We further evaluate the performance of Algorithm 4
with double unfolding, and show the results
in Fig. 11(c) and Fig. 11(f). The weight assignments
used for double unfolding are α1 = 0.5, α2 = 0, α3 = 0.5.
As we can see, the algorithm with differentiation still
outperforms the algorithm that minimizes the sum of the
ranks of two unfolded matrices, at both high (R = 0.7) and
low (R = 0.3) sample rates.

Through all the above comparisons, we show the benefits
of incorporating multiple latency frames to perform multi-
frame recovery, and the advantage of differentiated treatments
to missing node pairs (i, j) ∈ ΘA and (i, j) ∈ ΘB .
Specifically, the third unfolded matrix F(3) is suitable for
dealing with node pairs (i, j) ∈ ΘA, while any of the first two
unfolded matrices F(1) and F(2) are better to handle missing
entries (i, j) ∈ ΘB . It is shown that Algorithm 4 with such
differentiation is optimal.

VIII. CONCLUDING REMARKS

In this paper, we measure the latency characteristics of the
Seattle network which consists of personal devices, and revisit
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the problem of network latency prediction with the matrix
completion approach. By decomposing the network latency
matrix into a distance matrix and a network feature matrix,
our approach extracts the noisy low-rank network features
from a given incomplete RTT matrix and recovers all missing
values through rank minimization. We propose a robust class
of matrix completion algorithms, called IS-p, to approximate
the rank minimization problem with reweighted Schatten-p
norm minimization, and prove that the algorithm can converge
for any p between 1 and 2. We further enhance the latency
prediction with the help of partially collected historical obser-
vations forming a tensor, and extend our IS-p algorithm to the
case of approximate tensor completion. Extensive evaluations
based on the Seattle data show that our proposed algo-
rithms outperform state-of-the-art techniques, including net-
work embedding (e.g., high-dimensional Vivaldi with/without
heights) and matrix factorization (e.g., DMFSGD) by a sub-
stantial margin, although they do not show much improvement
on traditional PlanetLab data. This reveals the fact that our
algorithms can better estimate latencies in personal device
networks, for which traditional schemes are insufficient due
to triangle inequality violation, asymmetric latencies and time-
varying characteristics. The prediction accuracy is further sig-
nificantly improved by exploiting the inherent autocorrelation
property in the data sampled over multiple periods, through
the proposed approximate tensor completion scheme.

REFERENCES

[1] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 4, pp. 15–26, Oct. 2004.

[2] T. S. E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” in Proc. IEEE INFOCOM, Jun. 2002,
pp. 170–179.

[3] Y. Liao, W. Du, P. Geurts, and G. Leduc, “DMFSGD: A decentral-
ized matrix factorization algorithm for network distance prediction,”
IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1511–1524, Oct. 2013.

[4] Y. Chen et al., “Phoenix: A weight-based network coordinate system
using matrix factorization,” IEEE Trans. Netw. Service Manag., vol. 8,
no. 4, pp. 334–347, Dec. 2011.

[5] G. Wang, B. Zhang, and T. S. E. Ng, “Towards network triangle inequal-
ity violation aware distributed systems,” in Proc. ACM SIGCOMM IMC,
2007, pp. 175–188.

[6] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and
modeling Internet traffic dynamics of cellular devices,” in Proc. ACM
SIGMETRICS Perform. Eval. Rev., 2011, pp. 305–316.

[7] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle:
A platform for educational cloud computing,” in Proc. ACM SIGCSE,
2009, pp. 111–115.

[8] K. Mohan and M. Fazel, “Iterative reweighted algorithms for matrix
rank minimization,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 3441–3473,
2012.

[9] J.-F. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, 2010.

[10] Network Latency Datasets. accessed on Sep. 18, 2016. [Online]. Avail-
able: https://github.com/uofa-rzhu3/NetLatency-Data

[11] B. Donnet, B. Gueye, and M. A. Kaafar, “A survey on network
coordinates systems, design, and security,” IEEE Commun. Surveys Tut.,
vol. 12, no. 4, pp. 488–503, 4th Quart., 2010.

[12] J. Ledlie, P. Gardner, and M. Seltzer, “Network coordinates in the wild,”
in Proc. USENIX NSDI, 2007, p. 22.

[13] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha, “On suitability of Euclidean
embedding of Internet hosts,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 34, no. 1, pp. 157–168, 2006.

[14] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and Internet traffic matrices,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 4, pp. 267–278, Oct. 2009.

[15] Y. Mao, L. K. Saul, and J. M. Smith, “IDES: An Internet distance
estimation service for large networks,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 12, pp. 2273–2284, Dec. 2006.

[16] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Found. Comput. Math., vol. 9, no. 6, pp. 717–772, 2009.

[17] K. Xie et al., “Sequential and adaptive sampling for matrix com-
pletion in network monitoring systems,” in Proc. IEEE INFOCOM,
Apr./May 2015, pp. 2443–2451.

[18] B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency prediction for
personal devices: Distance-feature decomposition from 3D sampling,”
in Proc. IEEE INFOCOM, Apr./May 2015, pp. 307–315.

[19] K. LaCurts and H. Balakrishnan, “Measurement and analysis of real-
world 802.11 mesh networks,” in Proc. ACM SIGCOMM IMC, 2010,
pp. 123–136.

[20] J. Sommers and P. Barford, “Cell vs. WiFi: On the performance of
metro area mobile connections,” in Proc. ACM SIGCOMM IMC, 2012,
pp. 301–314.

[21] J. Huang et al., “A close examination of performance and power
characteristics of 4G LTE networks,” in Proc. ACM MobiSys, 2012,
pp. 225–238.

[22] B. Chun et al., “PlanetLab: An overlay testbed for broad-coverage
services,” ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 3,
pp. 3–12, Jul. 2003.

[23] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numer. Math., vol. 14, no. 5, pp. 403–420, Apr. 1970.

[24] L. Tang and M. Crovella, “Virtual landmarks for the Internet,” in Proc.
ACM SIGCOMM IMC, 2003, pp. 143–152.

[25] J. C. Gower, “Properties of Euclidean and non-Euclidean distance
matrices,” Linear Algebra Appl., vol. 67, pp. 81–97, Jun. 1985.

[26] Y. Zhang and Z. Lu, “Penalty decomposition methods for rank minimiza-
tion,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2011, pp. 1–28.

[27] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM Rev., vol. 52, no. 3, pp. 471–501, 2010.

[28] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively
reweighted least squares minimization for sparse recovery,” Commun.
Pure Appl. Math., vol. 63, no. 1, pp. 1–38, Jan. 2010.

[29] M. S. Lobo, M. Fazel, and S. Boyd, “Portfolio optimization with
linear and fixed transaction costs,” Ann. Oper. Res., vol. 152, no. 1,
pp. 341–365, 2007.

[30] E. J. Candès and T. Tao, “The power of convex relaxation: Near-
optimal matrix completion,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2053–2080, May 2010.

[31] V. de Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best
low-rank approximation problem,” SIAM J. Matrix Anal. Appl., vol. 30,
no. 3, pp. 1084–1127, 2008.

[32] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM,
vol. 60, no. 6, p. 45, Nov. 2013.

[33] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank
tensor recovery via convex optimization,” Inverse Problems, vol. 27,
no. 2, p. 025010, 2011.

[34] I. Olkin, A. W. Marshall, and B. C. Arnold, Inequalities: Theory of
Majorization and Its Applications (Springer Series in Statistics), 2nd ed.
New York, NY, USA: Springer, 2011.

Rui Zhu received the B.E. degree in electrical and
information engineering and the M.Sc. degree in
cryptography from Xidian University, Xi’an, China,
in 2011 and 2014, respectively. He is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, University of
Alberta, Edmonton, AB, Canada. His research inter-
ests include cloud computing, statistical machine
learning for networking, and information theory.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Bang Liu received the B.E. degree in electronic
information science from the University of Science
and Technology of China, Hefei, China, in 2013,
and the M.Sc. degree in computer engineering
from the University of Alberta, Edmonton, AB,
Canada, in 2015, where he is currently pursuing
the Ph.D. degree with the Department of Electrical
and Computer Engineering. His research interests
include statistical machine learning for networking,
spatial data analysis, and natural language
processing.

Di Niu (S’08–M’12) received the B.Engr. degree
from the Department of Electronics and Communi-
cations Engineering, Sun Yat-sen University, China,
in 2005, and the M.A.Sc. and Ph.D. degrees from the
Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON, Canada, in 2009
and 2013, respectively. Since 2012, he has been
with the Department of Electrical and Computer
Engineering, University of Alberta, where he is cur-
rently an Assistant Professor. His research interests
span the areas of cloud computing and storage, data

mining and statistical machine learning for social and economic computing,
and distributed and parallel systems. He is a member of the ACM.

Zongpeng Li received the B.E. degree in computer
science and technology from Tsinghua University,
Beijing, China, in 1999, and the M.S. degree in
computer science and the Ph.D. degree in electrical
and computer engineering from the University of
Toronto in 2001 and 2005, respectively. Since 2005,
he has been with the University of Calgary, where
he is currently a Professor of computer science.
From 2011 to 2012, he was a Visitor with the
Institute of Network Coding, The Chinese University
of Hong Kong. His research interests are in computer

networks, network coding, cloud computing, and energy networks.

Hong Vicky Zhao received the B.S. and
M.S. degrees from Tsinghua University, China,
in 1997 and 1999, respectively, and the Ph.D. degree
from the University of Maryland, College Park,
MD, USA, in 2004, all in electrical engineering.
She was a Research Associate with the Department
of Electrical and Computer Engineering, Institute
for Systems Research, University of Maryland,
from 2005 to 2006. Since 2006, she has been
with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB,

Canada, where she is currently an Associate Professor. Her research interests
include information security and forensics, multimedia social networks,
digital communications, and signal processing.


